Skip to main content
Log in

Optimization of radiation dosing schedules for proneural glioblastoma

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Glioblastomas are the most aggressive primary brain tumor. Despite treatment with surgery, radiation and chemotherapy, these tumors remain uncurable and few significant increases in survival have been observed over the last half-century. We recently employed a combined theoretical and experimental approach to predict the effectiveness of radiation administration schedules, identifying two schedules that led to superior survival in a mouse model of the disease (Leder et al., Cell 156(3):603–616, 2014). Here we extended this approach to consider fractionated schedules to best minimize toxicity arising in early- and late-responding tissues. To this end, we decomposed the problem into two separate solvable optimization tasks: (i) optimization of the amount of radiation per dose, and (ii) optimization of the amount of time that passes between radiation doses. To ensure clinical applicability, we then considered the impact of clinical operating hours by incorporating time constraints consistent with operational schedules of the radiology clinic. We found that there was no significant loss incurred by restricting dosage to an 8:00 a.m. to 5:00 p.m. window. Our flexible approach is also applicable to other tumor types treated with radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertuzzi A, Bruni C, Papa F, Sinisgalli C (2013) Optimal solution for a cancer radiotherapy problem. J Math Biol 66(1–2):311–349

    Article  MathSciNet  MATH  Google Scholar 

  • Bleau A, Hambardzumyan D, Ozawa T, Fomchenko E, Huse J, Brennan C, Holland E (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235

    Article  Google Scholar 

  • Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4(11):e7752

    Article  Google Scholar 

  • Brenner D, Hlatky L, Hahnfeldt P, Huang Y, Sachs R (1998) The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res 150(1):83–91

    Article  Google Scholar 

  • Brenner D (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239

    Article  Google Scholar 

  • Charles N, Ozawa T, Squatrito M, Bleau A, Brennan C, Hambardzumyan D, Holland E (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6(2):141–152

    Article  Google Scholar 

  • Chen J, Li Y, Yu T, McKay R, Burns D, Kernie S, Parada L (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    Article  Google Scholar 

  • Dale R, Jones B (2007) Radiobiological modelling in radiation oncology. Lippincott Williams & Wilkins, Philadelphia

    Book  Google Scholar 

  • Dionysiou D, Stamatakos G, Uzunoglu N, Nikita K, Marioli A (2004) A four-dimensional simulation model of tumor response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol 230(1):1–20

    Article  Google Scholar 

  • Fowler J (2010) 21 years of effective dose. Br J Radiol 83:554–568

    Article  Google Scholar 

  • Fowler J (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62(740):679–694

    Article  Google Scholar 

  • Hall E, Giaccia A (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Harpold H, Alvord E, Swanson K (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9

    Article  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (2013) SEER cancer statistics review, 1975–2010. National Cancer Institute, Bethesda

  • Laperriere N, Zuraw L, Cairncross G, Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64(3):259–273

    Article  Google Scholar 

  • Leder K, Pitter K, LaPlant Q, Hambardzumyan D, Ross B, Chan T, Holland E, Michor F (2014) Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156(3):603–616

    Article  Google Scholar 

  • Lu W, Chen M, Chen Q, Ruchala K, Olivera G (2008) Adaptive fractionation therapy: I. Basic concept and strategy. Phys Med Biol 53(19):5495

    Article  Google Scholar 

  • Mizuta M, Takao S, Date H, Kishimoto N, Sutherland L, Onimaru R, Shirato H (2012) A mathematical study to select fractionation regimen based on physical dose distribution and the linear-quadratic model. Int J Radiat Oncol Biol Phys 84(3):829–833

    Article  Google Scholar 

  • Orlandi E, Palazzi M, Pignoli E, Fallai C, Giostra A, Olmi P (2010) Radiobiological basis and clinical results of the simultaneous integrated boost (SIB) in intensity modulated radiotherapy (IMRT) for head and neck cancer: a review. Crit Rev Oncol Hematol 73(2):111–125

    Article  Google Scholar 

  • Pajonk F, Vlashi E, McBride W (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28(4):639–648

    Article  Google Scholar 

  • Phillips H, Kharbanda S, Chen R, Forrest W, Soriano R, Wu T, Misra A, Nigro J, Colman H, Soroceanu L et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  Google Scholar 

  • Phillips H, Kharbanda S, Chen R, Forrest W, Soriano R, Wu T, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  Google Scholar 

  • Pierre D (1969) Optimization theory with applications. Wiley, New York

    MATH  Google Scholar 

  • Rich J (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984

    Article  Google Scholar 

  • Rockne R, Alvord E, Rockhill J, Swanson K (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58(4–5):561–578

    Article  MathSciNet  MATH  Google Scholar 

  • Stamatakos G, Antipas V, Uzunoglu N, Dale R (2006) A four-dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density. Br J Radiol 79:389–400

    Article  Google Scholar 

  • Unkelbach J, Craft D, Salari E, Ramakrishnan J, Bortfeld T (2013) The dependence of optimal fractionation schemes on the spatial dose distribution. Phys Med Biol 58(1):159

    Article  Google Scholar 

  • Verhaak R, Hoadley K, Purdom E, Wang V, Qi Y, Wilkerson M, Cancer Genome Atlas Research Network (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  Google Scholar 

  • Withers R (1975) The four R’s of radiotherapy. Adv Radiat Biol 5(3):241–271

    Article  Google Scholar 

  • Yang Y, Xing L (2005) Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology. Med Phys 32(12):3666–3677

    Article  Google Scholar 

Download references

Acknowledgments

HB is partially supported by NSF Grants CMMI-1362236. KL is partially supported by NSF Grants DMS-1224362 and CMMI-1362236. FM is partially supported by the Grant NIH U54CA143798. E.H is supported by NIH grants U54 CA143798 and U54CA163167-01. We would like to thank an anonymous referee for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Leder.

Appendix

Appendix

1.1 Technical lemma

We prove here a technical lemma, which is quite standard but we provide a proof for completeness.

Lemma 3

For \(a>0\) and f a bounded function on [0, a] and continuous at 0,

$$\begin{aligned} \lim _{\nu \rightarrow \infty }\nu \int _0^ae^{-\nu y}f(y)dy=f(0). \end{aligned}$$

Proof

First note that

$$\begin{aligned} \nu \int _0^ae^{-\nu y}f(y)dy-f(0)&=\nu \int _0^ae^{-\nu y}(f(y)-f(0))dy-f(0)e^{-a\nu }, \end{aligned}$$

and it thus suffices to establish that

$$\begin{aligned} \lim _{\nu \rightarrow \infty }\nu \int _0^ae^{-\nu y}(f(y)-f(0))dy=0. \end{aligned}$$

For \(\nu >0\), define \(\ell (\nu )=\log (\nu )/\nu \) and then consider the decomposition

$$\begin{aligned} \nu \int _0^ae^{-\nu y}(f(y)-f(0))dy&=\nu \int _0^{\ell (\nu )}e^{-\nu y}(f(y) -f(0))dy\\&\quad +\nu \int _{\ell (\nu )}^ae^{-\nu y}(f(y)-f(0))dy\\&\le \max _{y\le \ell (\nu )}|f(y)-f(0)|\nu \int _0^{\ell (\nu )}e^{-\nu y}dy\\&\quad +2\max _{y\le a}|f(y)|\nu \int _{\ell (\nu )}^ae^{-\nu y}dy\\&\le \max _{y\le \ell (\nu )}|f(y)-f(0)|+2\max _{y\le a}|f(y)|/\nu . \end{aligned}$$

Both terms on the final line in the previous display then go to 0 as \(\nu \rightarrow \infty \) due to our assumptions on the function f. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badri, H., Pitter, K., Holland, E.C. et al. Optimization of radiation dosing schedules for proneural glioblastoma. J. Math. Biol. 72, 1301–1336 (2016). https://doi.org/10.1007/s00285-015-0908-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0908-x

Keywords

Mathematics Subject Classification

Navigation