Skip to main content
Log in

Understanding hermaphrodite species through game theory

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the existence and stability of sexual strategies (sequential hermaphrodite, successive hermaphrodite or gonochore) at a proximate level. To accomplish this, we constructed and analyzed a general dynamical game model structured by size and sex. Our main objective is to study how costs of changing sex and of sexual competition should shape the sexual behavior of a hermaphrodite. We prove that, at the proximate level, size alone is insufficient to explain the tendency for a pair of prospective copulants to elect the male sexual role by virtue of the disparity in the energetic costs of eggs and sperm. In fact, we show that the stability of sequential vs. simultaneous hermaphrodite depends on sex change costs, while the stability of protandrous vs. protogynous strategies depends on competition cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angeloni L (2003) Sexual selection in a simultaneous hermaphrodite with hypodermic insemination: body size, allocation to sexual roles and paternity. Anim Behav 66(3):417–426

    Article  Google Scholar 

  • Angeloni L, Bradbury JW, Charnov EL (2002) Body size and sex allocation in simultaneously hermaphroditic animals. Behav Ecol 13(3):419–426

    Article  Google Scholar 

  • Anthes N, Putz A, Michiels NK (2006) Sex role preferences, gender conflict and sperm trading in simultaneous hermaphrodites: a new framework. Anim Behav 72(1):1–12

    Article  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Sci New Ser 211(4489):1390–1396

    MATH  MathSciNet  Google Scholar 

  • Ben Miled S, Kebir A, Hbid ML (2010) Individual based model for grouper populations. Acta Biotheor 58(2–3):247–64

    Article  Google Scholar 

  • Brauer VS, Schärer L, Michiels NK (2007) Phenotypically flexible sex allocation in a simultaneous hermaphrodite. Evolution 61(1):216–222

    Article  Google Scholar 

  • Bruslé J (1985) Synopsis of biological data on the groupers epinephelus aeneus (geoffrey saint hilaire, 1809) and epinephelus guaza (linnaeus, 1758) of the atlantic ocean and mediterranean sea. FAO Fish Synop 129:1–69

    Google Scholar 

  • Cadet C, Metz JAJ, Klinkhamer PGL (2004) Size and the not-so-single sex: disentangling the effects of size and budget on sex allocation in hermaphrodites. Am Nat 164(6):779–792

    Article  Google Scholar 

  • Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 76(5):2480–2484

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. In: Monogr popul biol, vol 18. Princeton University Press, Princeton

  • Charnov EL, Bull JJ (1985) Sex allocation in a patchy environment: a marginal value theorem. J Theor Biol 115(4):619–624

    Article  Google Scholar 

  • Clifton KE, Rogers L (2008) Sex-specific mortality explains non-sex-change by large female Sparisoma radians. Anim Behav 75(2):e1–e10. doi:10.1016/j.anbehav.2007.06.025

    Article  Google Scholar 

  • DeWitt TJ (1996) Gender contests in a simultaneous hermaphrodite snail: a size-advantage model for behaviour. Anim Behav 51(2):345–351

    Article  Google Scholar 

  • Fischer EA (1988) Simultaneous hermaphroditism, tit-for-tat, and the evolutionary stability of social systems. Ethol Sociobiol 9(2–4):119–136

    Article  Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208

    Article  Google Scholar 

  • Hardy ICW (2009) Sex ratios: concepts and research methods. Princeton University Press, Princeton

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hoffman SG, Schildhauer MP, Warner RR (1985) The costs of changing sex and the ontogeny of males under contest competition for mates. Evolution (NY) 39(4):915–927. doi:10.2307/2408690

    Article  Google Scholar 

  • Kazancioğlu E, Alonzo SH (2009) Costs of changing sex do not explain why sequential hermaphroditism is rare. Am Nat 173(3):327–36

    Article  Google Scholar 

  • Kebir A, Ben Miled S, Hbid ML, Bravo de la Parra R (2010) Effects of density dependent sex allocation on the dynamics of a simultaneous hermaphroditic population: modelling and analysis. J Theor Biol 263(4):521–9

    Article  MathSciNet  Google Scholar 

  • Leigh EG, Charnov EL, Warner RR (1976) Sex ratio, sex change, and natural selection. Proc Natl Acad Sci USA 73(10):3656–3660

    Article  MATH  Google Scholar 

  • Leonard JL (1990) The Hermaphrodite’s Dilemma. J Theor Biol 147(3):361–371

    Article  Google Scholar 

  • Marino G, Casalotti V, Azzurro E, Massari A, Finoia MG, Mandich A (2001) Reproduction in the dusky grouper from the southern Mediterranean. J Fish Biol 58(4):909–927

    Article  Google Scholar 

  • Munday PL, Buston PM, Warner RR (2006a) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21(2):89–95

    Article  Google Scholar 

  • Munday PL, Wilson WJ, Warner RR (2006b) A social basis for the development of primary males in a sex-changing fish. Proc Biol Sci 273(1603):2845–2851

    Article  Google Scholar 

  • Munoz RC, Warner RR (2003) A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am Nat 161(5):749–761

    Article  Google Scholar 

  • Nakamura M, Bhandari R, Higa M (2003) The role estrogens play in sex differentiation and sex changes of fish. Fish Physiol Biochem 28(1–4):113–117

    Article  Google Scholar 

  • Okumura S (2001) Evidence of sex reversal towards both directions in reared red spotted grouper Epinephelus akaarai. Fish Sci 67(3):535–537

    Article  Google Scholar 

  • Orr HA (2007) Absolute fitness, relative fitness and utility. Evolution 61(12):2997–3000

    Article  Google Scholar 

  • Parker G (1983) Arms races in evolution—an ESS to the opponent-independent costs game. J Theor Biol 101(4):619–648

    Article  Google Scholar 

  • Reñones O, Grau A, Mas X, Riera F, Saborido-Rey F (2010) Reproductive pattern of an exploited dusky grouper Epinephelus marginatus (Lowe 1834) (Pisces: Serranidae) population in the western Mediterranean. Sci Mar 74(3):523–537. doi:10.3989/scimar.2010.74n3523

  • Schärer L (2009) Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution 63(6):1377–405

    Article  Google Scholar 

  • Sella G (1985) Reciprocal egg trading and brood care in a hermaphroditic polychaete worm. Anim Behav 33(3):938–944

    Article  Google Scholar 

  • Sella G (1988) Reciprocation, reproductive success, and safeguards against cheating in a hermaphroditic polychaete worm, Ophryotrocha diadema Akesson, 1976. Biol Bull 175(2):212–217

    Article  Google Scholar 

  • Smith JM, Brown RL (1986) Competition and body size. Theor Popul Biol 30(2):166–179

    Article  MATH  Google Scholar 

  • St Mary CM (1994) Sex allocation in a simultaneous hermaphrodite, the blue-banded goby (Lythrypnus dalli): the effects of body size and behavioral gender and the consequences for reproduction. Behav Ecol 5(3):304–313

    Article  Google Scholar 

  • St Mary CM (1997) Sequential patterns of sex allocation in simultaneous hermaphrodites: do we need models that specifically incorporate this complexity. Am Nat 150(1):73–97

    Article  Google Scholar 

  • Warner RR (1988) Sex change and the size-advantage model. Trends Ecol Evol 3(6):133–136

    Article  Google Scholar 

  • Warner RR, Munoz RC (2007) Needed: a dynamic approach to understand sex change. Anim Behav 75(2):11–14. doi:10.1016/j.anbehav.2007.10.013

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wethington AR, Dillon J, Robert T (1996) Gender choice and gender conflict in a non-reciprocally mating simultaneous hermaphrodite, the freshwater snail, Physa. Anim Behav 51(5):1107–1118

    Article  Google Scholar 

  • Zabala M, Louisy P, Garcia-Rubies A, Gracia V (1997) Socio-behavioural context of reproduction in the mediterranean dusky grouper epinephelus marginatus (lowe, 1834) (pisces, serranidae) in the medes islands marine reserve (nw mediterranean, spain). Sci Mar 61(1):65–77

    Google Scholar 

Download references

Acknowledgments

AK would like to thank DIMACS at Rutgers University, where most of this work was done. SBM would like to thank Fulbright program for financial support. The authors would like to thank the editor and the reviewers for their helpful comments that improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Ben Miled.

Appendix: Proof of Theorem 2.1

Appendix: Proof of Theorem 2.1

Let \(X^*=(x_1^*,\ldots ,x_4^*)\) an equilibrium point of (1). As for all \(s\in S, \sum _i x^*_i(s)=1\), then at equilibrium and for all \(s\in S\) the system (1) is equivalent to:

$$\begin{aligned} \left\{ \!\begin{array}{ll} x_1^*(s )((1\!-\!x_1^*(s ))f_{1,4}(s,X^*(s))\!-x_2^*(s )f_{2,4}(s,X^*(s))-x_3^*(s )f_{3,4}(s,X^*(s)))&{}=0 \\ x_2^*(s )((1\!-\!x_2^*(s ))f_{2,4}(s,X^*(s))\!-x_1^*(s )f_{1,4}(s,X^*(s))-x_3^*(s )f_{3,4}(s,X^*(s)))&{}=0 \\ x_3^*(s )((1\!-\!x_3^*(s ))f_{3,4}(s,X^*(s))\!-x_1^*(s )f_{1,4}(s,X^*(s))-x_2^*(s )f_{2,4}(s,X^*(s)))&{}=0 \end{array} \right. \end{aligned}$$
(15)

where \(f_{i,4}=(f_i-f_4), \forall i\in \left\{ 1\ldots 3\right\} \).

Now, let \(\{A_i\}_{i=1\ldots 4}\) a partition of \(S\) and let \( x_i^*(s)=1_{A_i}(s), \forall i\in \{1, \ldots , 4\} \), we have then \(\forall s\in S\):

$$\begin{aligned}&x_1^*(s)x_2^*(s)=x_1^*(s)x_3^*(s)=x_2^*(s)x_3^*(s)=0,\nonumber \\&x_1^*(s )(1-x_1^*(s )) =x_2^*(s )(1-x_2^*(s ))=x_3^*(s )(1-x_3^*(s ))=0 \text{ and } \nonumber \\&x_1^*(s )+x_2^*(s )+x_3^*(s )+x_4^*(s )=1 \end{aligned}$$
(16)

Using latter Eq. (16), we can easily prove that for all \(s \in S\), \(X^*(s)\) satisfies (15) and that the Jacobian matrix, \(J\), of the system (1) at the equilibrium point \(X^*\) is:

$$\begin{aligned} {J}(X^*)= \left( \begin{array}{cccc} j(X^*(s_0))&{}0&{}\cdots &{}0\\ 0&{}\ddots &{}\ddots &{}\vdots \\ \vdots &{}\ddots &{}\ddots &{}0\\ 0&{}\cdots &{}0&{}j(X^*(s_{max}))\\ \end{array} \right) \end{aligned}$$
(17)

Where \(\forall s \in S\),

$$\begin{aligned} j(X^*(s))= \left( \begin{array}{cll} \lambda _1(s)&{} -x_1^*(s)f_{2,4}(s,X^*(s))&{}-x_1^*(s)f_{3,4}(s,X^*(s)) \\ -x_2^*(s)f_{1,4}(s,X^*(s))&{}\lambda _2(s) &{} -x_2^*(s)f_{3,4}(s,X^*(s))\\ -x_3^*(s)f_{1,4}(s,X^*(s)) &{} -x_3^*(s)f_{2,4}(s,X^*(s))&{} \lambda _3(s) \end{array} \right) \end{aligned}$$
(18)

and

$$\begin{aligned} \lambda _1(s)= & {} (1-2x_1^*(s))f_{1,4}(s,X^*(s))-x_2^*(s)f_{2,4} (s,X^*(s))-x_3^*(s)f_{3,4}(s,X^*(s))\\ \lambda _2(s)= & {} (1-2x_2^*(s))f_{2,4}(s,X^*(s))-x_1^*(s)f_{1,4} (s,X^*(s))-x_3^*(s)f_{3,4}(s,X^*(s))\\ \lambda _3(s)= & {} (1-2x_3^*(s))f_{3,4}(s,X^*(s))-x_1^*(s)f_{1,4} (s,X^*(s))-x_2^*(s)f_{2,4}(s,X^*(s)) \end{aligned}$$

Therefore, the characteristic polynomial of (18) is,

$$\begin{aligned} \det (J(X^*(s))-\lambda I)=\displaystyle \prod _{s\in S}\det (j(X^*(s))-\lambda (s) I_3)=0. \end{aligned}$$

and then \(\forall s \in S\), \( \lambda _1(s), \lambda _2(s) \text{ and } \lambda _3(s)\) are the eigenvalues of the matrix (17).

Finally, by following we replace the value of \(X^*\) and we show that \(\forall i\in \{1,\ldots , 4\} \text{ and } \forall s \in A_i\):

$$\begin{aligned} \{\lambda _j(s), j\in \{1,2,3\}\}=\{(f_j-f_i)(s, X^*(s)),j\in \{1,2,3\}{\setminus } i\} \end{aligned}$$

which prove the result in Theorem 2.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebir, A., Fefferman, N.H. & Ben Miled, S. Understanding hermaphrodite species through game theory. J. Math. Biol. 71, 1505–1524 (2015). https://doi.org/10.1007/s00285-015-0866-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0866-3

Keywords

Mathematics Subject Classification

Navigation