Skip to main content
Log in

Absolute stability and dynamical stabilisation in predator-prey systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many ecological systems exhibit multi-year cycles. In such systems, invasions have a complicated spatiotemporal structure. In particular, it is common for unstable steady states to exist as long-term transients behind the invasion front, a phenomenon known as dynamical stabilisation. We combine absolute stability theory and computation to predict how the width of the stabilised region depends on parameter values. We develop our calculations in the context of a model for a cyclic predator-prey system, in which the invasion front and spatiotemporal oscillations of predators and prey are separated by a region in which the coexistence steady state is dynamically stabilised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Dunbar SR (1984) Travelling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \(\text{ R }^{4}\). Trans Am Math Soc 268:557–594

    Google Scholar 

  • Dunbar SR (1986) Travelling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J Appl Math 46:1057–1078

    Article  MATH  MathSciNet  Google Scholar 

  • Dyczkowski J, Yalden DW (1998) An estimate of the impact of predators on the British field vole Microtus agrestis population. Mammal Rev 28:165–184

    Article  Google Scholar 

  • Fraile JM, Sabina JC (1989) General conditions for the existence of a critical point-periodic wave front connection for reaction-diffusion systems. Nonlinear Anal Theory Methods Appl 13:767–786

    Article  MATH  MathSciNet  Google Scholar 

  • Garvie MR (2007) Finite difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bull Math Biol 69:931–956

    Article  MATH  MathSciNet  Google Scholar 

  • Graham IM, Lambin X (2002) The impact of weasel predation on cyclic field-vole survival: the specialist predator hypothesis contradicted. J Anim Ecol 71:946–956

    Article  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five Potential consequences of climate change for invasive species. Cons Biol 22:534–543

    Article  Google Scholar 

  • King CM (1989) The natural history of weasels and stoats. Christoper Helm, London

    Google Scholar 

  • Kopell N, Howard LN (1973) Plane wave solutions to reaction-diffusion equations. Stud Appl Math 52:291–328

    MATH  MathSciNet  Google Scholar 

  • Korpimäki E, Norrdahl K (1998) Experimental reduction of predators reverses the crash phase of small-rodent cycles. Ecology 79:2448–2455

    Google Scholar 

  • Korpimäki E, Norrdahl K, Klemola T, Pettersen T, Stenseth NC (2002) Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation. Proc R Soc Lond B 269:991–997

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  • Malchow H, Petrovskii SV (2002) Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Math Comput Model 36:307–319

    Article  MATH  MathSciNet  Google Scholar 

  • Malchow H, Petrovskii SV, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Matsumura C, Yokoyama Y, Washitani I (2004) Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus Terrestris L. (Hymenoptera: Apidae) naturalized in Southern Hokkaido. Jpn Glob Environ Res 8:51–66

    Google Scholar 

  • May RM, Mclean AR (2007) Theoretical ecology: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  • McDonald RA, Harris S (2002) Population biology of stoats Mustela erminea and weasels Mustela nivalis on game estates in Great Britain. J Appl Ecol 39(5):793–805

    Article  Google Scholar 

  • Norrdahl K, Korpimäki E (2002) Changes in population structure and reproduction during a 3-yr population cycle of voles. OIKOS 96(2):331–345

    Article  Google Scholar 

  • Nozaki K, Bekki N (1983) Pattern selection and spatiotemporal transition to Chaos in the Ginzburg-Landau equation. Phys Rev Lett 51:2171–2174

    Article  MathSciNet  Google Scholar 

  • Oli MK (2003) Population cycles of small rodents are caused by specialist predators: or are they? Trends Ecol Evol 18:105–107

    Article  Google Scholar 

  • Owen MR, Lewis MA (2001) How predation can slow, stop or reverse a prey invasion. Bull Math Biol 63:655–684

    Article  Google Scholar 

  • Petrovskii SV, Vinogradov ME, Morozov AY (1998) Spatial-temporal dynamics of a localized populational “burst” in a distributed prey-predator system. Okeanologiya 38:881–890

    Google Scholar 

  • Petrovskii SV, Vinogradov ME, Morozov AY (2000) Spatial-temporal dynamics of a localized populational “burst” in a distributed prey-predator system. Okeanologiya 38:37–51

    Google Scholar 

  • Petrovskii S, Kawasaki K, Takasu F, Shigesada N (2001) Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Jpn J Indust Appl Math 18:459–481

    Article  MATH  MathSciNet  Google Scholar 

  • Rademacher JDM, Sandstede B, Scheel A (2007) Computing absolute and essential spectra using continuation. Phys D 229:166–183

    Article  MATH  MathSciNet  Google Scholar 

  • Reynolds JJH, Massey FP, Lambin X, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE (2012) Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia 170:445–456

    Article  Google Scholar 

  • Rosenzweig ML, Macarthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Natur 97:209–223

    Article  Google Scholar 

  • Sandstede B, Scheel A (2000) Absolute and convective instabilities of waves on unbounded and large bounded domains. Phys D 145:233–277

    Article  MATH  MathSciNet  Google Scholar 

  • Sherratt JA (2001) Periodic travelling waves in cyclic predator-prey systems. Ecol Lett 4:30–37

    Article  Google Scholar 

  • Sherratt JA, Smith MJ (2008) Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models. J R Soc Interface 5:483–505

    Article  Google Scholar 

  • Sherratt JA, Eagan BT, Lewis MA (1997) Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality. Philos Trans R Soc Lond B 352:21–38

    Article  Google Scholar 

  • Sherratt TN, Lambin X, Petty SJ, MacKinnon JL, Coles CF, Thomas CJ (2000) Application of coupled oscillator models to understand extensive synchrony domains and travelling waves in populations of the field vole in Kielder forest, UK. J Appl Ecol 37(suppl. 1):148–158

    Article  Google Scholar 

  • Sherratt JA, Lambin X, Thomas CJ, Sherratt TN (2002) Generation of periodic waves by landscape features in cyclic predator-prey systems. Proc R Soc Lond B 269:327–334

    Article  Google Scholar 

  • Sherratt JA, Smith MJ, Rademacher JDM (2009) Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion. PNAS 106:10890–10895

    Article  MATH  Google Scholar 

  • Smith MJ, Sherratt JA (2009) Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves. Phys Rev E 80 (Art. No. 046209)

  • Smith MJ, Rademacher JDM, Sherratt JA (2009) Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of Lambda-Omega type. SIAM J Appl Dyn Syst 8:1136–1159

    Article  MATH  MathSciNet  Google Scholar 

  • Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pysek P (2008) Plant invasions: human perception, ecological impacts and management. Backhuys, Leiden

    Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Turchin P, Hanski I (1997) An empirically based model for lattitudinal gradient in vole population dynamics. Am Nat 149:842–874

    Article  Google Scholar 

  • van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386:29–222

    Article  MATH  Google Scholar 

  • Volterra V (1926) Variazione fluttuazioni del numero d’individui in specie animali conviventi. Mem Acad Lincei 2:31–113 (Translation in an appendix to Chapman RN (1931) J Anim Ecol 409–448)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayawoa S. Dagbovie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagbovie, A.S., Sherratt, J.A. Absolute stability and dynamical stabilisation in predator-prey systems. J. Math. Biol. 68, 1403–1421 (2014). https://doi.org/10.1007/s00285-013-0672-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0672-8

Keywords

Mathematics Subject Classification (2000)

Navigation