Skip to main content

Advertisement

Log in

A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This work studies a fundamental problem in blood capillary growth: how the cell proliferation or death induces the stress response and the capillary extension or regression. We develop a one-dimensional viscoelastic model of blood capillary extension/regression under nonlinear friction with surroundings, analyze its solution properties, and simulate various growth patterns in angiogenesis. The mathematical model treats the cell density as the growth pressure eliciting a viscoelastic response from the cells, which again induces extension or regression of the capillary. Nonlinear analysis captures two cases when the biologically meaningful solution exists: (1) the cell density decreases from root to tip, which may occur in vessel regression; (2) the cell density is time-independent and is of small variation along the capillary, which may occur in capillary extension without proliferation. The linear analysis with perturbation in cell density due to proliferation or death predicts the global biological solution exists provided the change in cell density is sufficiently slow in time. Examples with blow-ups are captured by numerical approximations and the global solutions are recovered by slow growth processes, which validate the linear analysis theory. Numerical simulations demonstrate this model can reproduce angiogenesis experiments under several biological conditions including blood vessel extension without proliferation and blood vessel regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–900

    Article  MATH  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  Google Scholar 

  • Balding D, McElwain DLS (1985) A mathematical model of tumor-induced capillary growth. J Theor Biol 114:53–73

    Article  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105

    Article  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 5:e1000445

    Article  MathSciNet  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Article  Google Scholar 

  • Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250:25–36

    Article  Google Scholar 

  • Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5(10):e1000549

    Article  Google Scholar 

  • Byrne HM, Chaplain MAJ (1995) Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57:461–486

    MATH  Google Scholar 

  • Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58:219–233

    Article  MATH  MathSciNet  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  Google Scholar 

  • Costa KD, Sim AJ, Yin FCP (2006) Non-hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng 128:176–184

    Article  Google Scholar 

  • CRC (1992–1993) Handbook of chemistry and physics, 73rd edn. Chemical Rubber Publishing Company, Boca Raton

  • Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pavan-Langston D, Dana R (2009) Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol 127:381–389

    Article  Google Scholar 

  • De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649

    Article  Google Scholar 

  • Fernandez P, Ott A (2008) Single cell mechanics: stress stiffening and kinematic hardening. Phys Rev Lett 100:238102

    Article  Google Scholar 

  • Fozard JA, Byrne HM, Jensen OE, King JR (2010) Continuum approximations of individual-based models for epithelial monolayers. Math Med Biol 27:39–74

    Article  MATH  MathSciNet  Google Scholar 

  • Fung YC, Tong P (2001) Classical and computational solid mechanics. World Scientific, Singapore

  • Garikipati K (2009) The kinematics of biological growth. Appl Mech Rev 62:030801

    Article  Google Scholar 

  • Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  Google Scholar 

  • Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246

    Article  Google Scholar 

  • Gerhardt H, Betsholtz C (2005) How do endothelial cells orientate? EXS 94:3–15

    Google Scholar 

  • Gracheva ME, Othmer HG (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66:167–193

    Article  MathSciNet  Google Scholar 

  • Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg 2:1

    Article  Google Scholar 

  • Holmes MJ, Sleeman BD (2000) A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202:95–112

    Article  Google Scholar 

  • Jackson T, Zheng X (2010) A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull Math Biol 72:830–868

    Article  MATH  MathSciNet  Google Scholar 

  • Jo N, Mailhos C, Ju M et al (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168(6):2036–2053

    Article  Google Scholar 

  • Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  Google Scholar 

  • Larripa K, Mogilner A (2006) Transport of a 1d viscoelastic actin-myosin strip of gel as a model of a crawling cell. Physica A 372:113–123

    Article  Google Scholar 

  • Levine HA, Nilsen-Hamilton M (2006) Angiogenesis-a biochemial/mathematical perspective. In: Friedman A (ed) Tutorials in mathematical biosciences III. Springer, Berlin, p 65

    Google Scholar 

  • Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M (2001) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63:801–863

    Article  Google Scholar 

  • Lieberman GM (1996) Second order parabolic differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Liu G, Qutub AA, Vempati P, Popel AS (2011) Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8:6

    Article  Google Scholar 

  • Manoussaki D (2003) A mechanochemical model of angiogenesis and vasculogenesis. ESAIM Math Model Numer Anal 37:581–599

    Article  MATH  MathSciNet  Google Scholar 

  • McDougall SR, Anderson AR, Chaplain MA, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4):673–702

    Article  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241:564–589

    Article  MathSciNet  Google Scholar 

  • Mantzaris N, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49:111–187

    Article  MATH  MathSciNet  Google Scholar 

  • Mi Q, Swigon D, Rivière R, Selma C, Vodovotz Y, Hackam DJ (2007) One-dimensional elastic continuum model of enterocyte layer migration. Biophys J 93:3745–3752

    Article  Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160

    Article  Google Scholar 

  • Peirce SM (2008) Computational and mathematical modeling of angiogenesis. Microcirculation 15:739–751

    Article  Google Scholar 

  • Peirce SM, Van Gieson EJ, Skalak TC (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J 18:731–733

    Google Scholar 

  • Pettet GJ, Byrne HM, McElwain DLS, Norbury J (1996) A model of wound-healing angiogenesis in soft tissue. Math Biosci 263:1487–1493

    Google Scholar 

  • Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumor angiogenesis and anti-angiogenesis strategies. Mathe Med Biol 20:135–181

    Article  MATH  Google Scholar 

  • Plank MJ, Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66:1785–1819

    Article  MathSciNet  Google Scholar 

  • Plank MJ, Sleeman BD, Jones PF (2004) A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 229:435–454

    Article  MathSciNet  Google Scholar 

  • Prass M, Jacobson K, Mogilner A, Radmacher M (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174:767–772

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275:349–360

    Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281:H1015–H1025

    Google Scholar 

  • Qutub A, Mac Gabhann A (2009) Multiscale models of angiogenesis: integration of molecular mechanisms with cell- and organ-level models. IEEE Eng Med Biol 28:14–31

    Article  Google Scholar 

  • Qutub A, Popel A (2009) Elongation, proliferation and migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol 3:13

    Article  Google Scholar 

  • Schmidt M et al (2007) EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development 134:2913–2923

    Article  Google Scholar 

  • Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. PNAS 105:2628–2633

    Article  Google Scholar 

  • Semino CE, Kamm RD, Lauffenburger DA (2006) Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res 312:289–298

    Google Scholar 

  • Shirinifard A, Gens JS, Zaitlen BL, Popawski NJ, Swat M et al (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4:e7190

    Article  Google Scholar 

  • Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Investig 51:624–634

    Google Scholar 

  • Sleeman BD, Wallis IP (2002) Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation. J Math Comput Model 36:339–358

    Article  MATH  MathSciNet  Google Scholar 

  • Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis. J Theor Biol 152:377–403

    Article  Google Scholar 

  • Sun S, Wheeler MF, Obeyesekere M, Patrick C (2005) A deterministic model of growth factor induced angiogenesis. Bull Math Biol 67:313–337

    Article  MathSciNet  Google Scholar 

  • Swartz MA, Fleury ME (2007) Interstitial flow and Its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  Google Scholar 

  • Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110:2109–2116

    Google Scholar 

  • Tong S, Yuan F (2001) Numerical simulations of angiogenesis in the cornea. Microvasc Res 61:14–27

    Article  Google Scholar 

  • Travasso RDM, Corvera Poir E (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6:e19989

    Article  Google Scholar 

  • Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. PNAS 106:16782–16787

    Article  Google Scholar 

  • Vakoc BJ et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  Google Scholar 

  • Volokh KY (2006) Stresses in growing soft tissues. Acta Biomater 2:493–504

    Article  Google Scholar 

  • Wcislo R, Dzwinel W, Yuen D, Dudek A (2009) A 3-D model of tumor progression based on complex automata driven by particle dynamics. J Mol Model 15:1517–1539

    Article  Google Scholar 

  • Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH, Hartnett ME, Bautch VL (2007) Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109:1345–1352

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dapeng Du in Northeast Normal University (China) and Jeffrey Rauch in University of Michigan for helpful discussions. Xie thanks the support from University of Michigan where part of the work was done. Xie was supported in part by an NSFC Grant 11241001 and a startup grant from Shanghai Jiao Tong University. Zheng thanks Central Michigan University ORSP Early Career Investigator Grant #C61373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zheng.

Appendix

Appendix

1.1 A Numerical method

We consider solving a more general nonlinear problem

$$\begin{aligned} \left\{ \begin{aligned}&\beta \left(1+\frac{\partial u}{\partial x}\right) \frac{\partial u}{\partial t}= \frac{\partial }{\partial x}\left( \frac{\partial u}{\partial x} + \mu \frac{\partial ^2 {u}}{\partial x\partial t} - (f(x,t)-1)\right), \\&u(0,t) = 0, \quad \frac{\partial u}{\partial x} + \mu \frac{\partial ^2 {u}}{\partial x\partial t } - { (f(x,t)-1)} = g(t), \\&u(x,0) = 0. \end{aligned}\right. \end{aligned}$$
(31)

with a finite element method in the Sobolev space \(H^1(0,1)\), that is, the square-integrable functions up to the first order weak derivative.

Choose a uniform time step \(\Delta t > 0\) and denote the time points when solutions are sought as \(t^k=k\Delta t, k=0, 1, \ldots \). The numerical scheme is to find \(u^{k+1}(x) \in H^1(0,1)\) with \(u^{k+1}(0)=0\), such that for any test function \(\phi \,{\in }\, H^1(0,1)\) with \(\phi (0)\,{=}\,0\),

$$\begin{aligned}&\int \limits _0^1 \beta \left(1+\frac{\partial u^{k}}{\partial x}\right) \frac{u^{k+1}-u^k}{\Delta t} \phi = \phi (1) g(t^{k+1})\nonumber \\&\quad - \int \limits _0^1 \left(\frac{\partial u^{k+1}}{\partial x} + \mu \frac{\partial }{\partial x } \frac{u^{k+1}-u^k}{\Delta t} - { (f^{k+1}-1)}\right) \phi _x. \end{aligned}$$
(32)

The spatial domain \([0,1]\) is uniformly discretized into \(n\) equal-sized sub-intervals with mesh size \(h=\frac{1}{n}\), and mesh points are denoted as \(x_i=(i-1)h, i=1, \ldots , n+1\). The space \(H^1(0,1)\) is approximated by the continuous piecewise linear finite element space:

$$\begin{aligned} V_h(0,1)&= \{ v_h\in C^0(0,1): v_h \text{ is} \text{ a} \text{ linear} \text{ function} \text{ on} \text{ each} \text{ subinterval} [x_i,x_{i+1}], \\&i=1,\ldots , n \}. \end{aligned}$$

Numerical tests show this scheme is first order accurate in time (data not shown). A Matlab version of the code has been provided in the website http://www.cst.cmich.edu/users/zheng1x/ In all the numerical simulations in this work, we have chosen \(n=200\) and \(\Delta t=10^{-4}\), and each simulation result is almost identical to that with the more refined choice \(n=400\) and \(\Delta t=5\times 10^{-5}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Xie, C. A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation. J. Math. Biol. 68, 57–80 (2014). https://doi.org/10.1007/s00285-012-0624-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0624-8

Keywords

Mathematics Subject Classification

Navigation