Skip to main content
Log in

Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Transport models of growth hormones can be used to reproduce the hormone accumulations that occur in plant organs. Mostly, these accumulation patterns are calculated using time step methods, even though only the resulting steady state patterns of the model are of interest. We examine the steady state solutions of the hormone transport model of Smith et al. (Proc Natl Acad Sci USA 103(5):1301–1306, 2006) for a one-dimensional row of plant cells. We search for the steady state solutions as a function of three of the model parameters by using numerical continuation methods and bifurcation analysis. These methods are more adequate for solving steady state problems than time step methods. We discuss a trivial solution where the concentrations of hormones are equal in all cells and examine its stability region. We identify two generic bifurcation scenarios through which the trivial solution loses its stability. The trivial solution becomes either a steady state pattern with regular spaced peaks or a pattern where the concentration is periodic in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allgower E, Georg K (1994) Numerical path following. Springer, Berlin

    Google Scholar 

  • Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewcz P, Kuhlemeier C (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:373–384

    Article  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  Google Scholar 

  • Bilsborough G, Runions A, Barkoulas M, Jenkins H, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Article  Google Scholar 

  • Champneys AR, Sandstede B (2007) Numerical computation of coherent structures. In: Krauskopf B, Osinga HM, Galan-Vioque J (eds) Numerical continuation methods for dynamical systems. Springer, Berlin, pp 331–358

    Chapter  Google Scholar 

  • Clewley R, Sherwood W, LaMar M, Guckenheimer J (2007) Pydstool, a software environment for dynamical systems modeling. http://pydstool.sourceforge.net

  • De Smet I, Tetsumura T, De Rybel B, Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennet M, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of arabidopsis. Development 134:681–690

    Article  Google Scholar 

  • Dhondt S, Van Haerenborgh D, Van Cauwenbergh C, Merks R, Philips W, Beemster G, Inzé D (2011) Quantitative analysis of venation patterns of arabidopsis leaves by supervised image analysis. Plant J 69:553–563

    Article  Google Scholar 

  • Doedel E, Champneys A, Fairgrieve T, Kuznetsov Y, Sandstede B, Wang X (1997) Continuation and bifurcation software for ordinary differential equations (with homcont). Available by anonymous ftp from ftp cs concordia ca, directory pub/doedel/auto

  • Draelants D, Vanroose W, Broeckhove J, Beemster GTS (2012) Influence of an exogenous model parameter on the steady states in an auxin transport model. Proceedings PMA (to appear)

  • Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  Google Scholar 

  • Hairer E, Nørsett S, Wanner G (2009) Solving ordinary differential equations I: nonstiff problems. Springer, Berlin

    Google Scholar 

  • Hoyle RB (2006) Pattern formation: an introduction to methods. University Press, Cambridge

    Book  Google Scholar 

  • Jönsson H, Heisler M, Shapiro B, Meyerowitz E, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103(5):1633–1638

    Article  Google Scholar 

  • Kelley CT (1995) Iterative methods for linear and nonlinear equations, Society for Industrial Mathematics

  • Krauskopf B, Osinga H, Galán-Vioque J (2007) Numerical continuation methods for dynamical systems: path following and boundary value problems. Springer, Berlin

    Book  Google Scholar 

  • Merks RMH, Van de Peer Y, Inzé D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390

    Article  Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542

    Article  Google Scholar 

  • Palme K, Gälweiler L (1999) Pin-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2(5):375–381

    Article  Google Scholar 

  • Péret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemer J, Venison E, Howell C, Perez-Amador MA, Yun J, Alonso J, Beemster GTS, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct function during Arabidopsis development. Plant Cell (submitted)

  • Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260

    Article  Google Scholar 

  • Salinger A, Burroughs E, Pawlowski R, Phipps E, Romero L (2005) Bifurcation tracking algorithms and software for large scale applications. Int J Bifurc Chaos Appl Sci Eng 15(3):1015–1032

    Article  MathSciNet  MATH  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  Google Scholar 

  • Seydel R (1994) Practical bifurcation and stability analysis: from equilibrium to chaos, vol 5. Springer, Berlin

    MATH  Google Scholar 

  • Shirakawa M, Ueda H, Shimada T, Nishiyama C, Hara-Nishimura I (2009) Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution. Plant Cell Physiol 50(7):1319–1328

    Article  Google Scholar 

  • Smith R, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103(5):1301–1306

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge fruitful discussions with Dirk De Vos and Przemyslaw Klosiewicz. DD acknowledges financial support from the Department of Mathematics and Computer Science of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Draelants.

Additional information

This work is part of the Geconcerteerde Onderzoeksactie (G.O.A.) research grant “A System Biology Approach of Leaf Morphogenesis” granted by the research council of the University of Antwerp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draelants, D., Broeckhove, J., Beemster, G.T.S. et al. Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model. J. Math. Biol. 67, 1279–1305 (2013). https://doi.org/10.1007/s00285-012-0588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0588-8

Keywords

Mathematics Subject Classification (2000)

Navigation