Skip to main content

Advertisement

Log in

The role of backward mutations on the within-host dynamics of HIV-1

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The quality of life for patients infected with human immunodeficiency virus (HIV-1) has been positively impacted by the use of antiretroviral therapy (ART). However, the benefits of ART are usually halted by the emergence of drug resistance. Drug-resistant strains arise from virus mutations, as HIV-1 reverse transcription is prone to errors, with mutations normally carrying fitness costs to the virus. When ART is interrupted, the wild-type drug-sensitive strain rapidly out-competes the resistant strain, as the former strain is fitter than the latter in the absence of ART. One mechanism for sustaining the sensitive strain during ART is given by the virus mutating from resistant to sensitive strains, which is referred to as backward mutation. This is important during periods of treatment interruptions as prior existence of the sensitive strain would lead to replacement of the resistant strain. In order to assess the role of backward mutations in the dynamics of HIV-1 within an infected host, we analyze a mathematical model of two interacting virus strains in either absence or presence of ART. We study the effect of backward mutations on the definition of the basic reproductive number, and the value and stability of equilibrium points. The analysis of the model shows that, thanks to both forward and backward mutations, sensitive and resistant strains co-exist. In addition, conditions for the dominance of a viral strain with or without ART are provided. For this model, backward mutations are shown to be necessary for the persistence of the sensitive strain during ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boffito M, Winston A, Owen A (2005) Host determinants of antiretroviral activity. Curr Opin Infect Dis 18(6):543–549

    Article  Google Scholar 

  • Bonhoeffer S, Nowak MA (1997) Pre-existence and emergence of drug resistance in HIV-1 infection. Proc Roy Soc B 264(1382):631–637

    Article  Google Scholar 

  • Buckley RM, Gluckman SJ (2002) HIV infection in primary care. W. B. Saunders Company, An imprint of Elsevier Science, Philadelphia

    Google Scholar 

  • Burkle WS (2002) Antiretroviral therapy for HIV: drug resistance and sequencing. J Assoc Nurses AIDS Care 13(1):76–80

    Article  Google Scholar 

  • Carr J (1981) Applications of centre manifold theory. Springer, New York

    Book  MATH  Google Scholar 

  • Castillo-Chávez C, Song BJ (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361–404

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chávez C, Feng C, Huang W (2002) In: Castillo-Cháve C et al (eds) On the computation of \(R_0\) and its role on global stability., Mathematical approaches for emerging and reemerging infectious diseases: an introduction. IMA, Minneapolis

  • Deeks SG (2003) Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 362(9400):2002–2011

    Article  Google Scholar 

  • Deeks SG, Wrin T, Liegler T, Hoh R, Hayden M, Barbour JD, Hellman NS, Petropoulos CJ, McCune JM, Hellerstein MK, Grant RM (2001) Virological and immunological consequences of discontinuing combinational antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N Engl J Med 344:472–480

    Google Scholar 

  • Eron JJ, Benoit SL, MacArthur RD, Santana J, Quinn JB, Kuritzkes DR, Fallon MA, Rubin M (1995) Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200500 CD4+ cells per cubic millimeter. N Engl J Med 333:1662–1669

    Article  Google Scholar 

  • Frost SDW, Nijhuis M, Schuurman R, Boucher CAB, Brown Leigh AJ (2000) Evolution of lamivudine resistance in human immunodeficiency virus type 1-infected individuals: the relative roles of drift and selection. J Virol 74(14):6262–6268

    Article  Google Scholar 

  • Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, Masliah E, Lackner AA (2000) Early brain injury in the SIV-macaque model of AIDS. AIDS 14:2841–2849

    Article  Google Scholar 

  • Hecht FM, Grant RM (2005) Resistance testing in drug-naïve HIV-infected patients: is it time? Clin Infect Dis 41:1324–1325

    Article  Google Scholar 

  • Howard AA, Arnsten JH, Lo Y, Vlahov D, Rich JD, Schuman P, Stone VE, Smith DK, Schoenbaum EE (2002) A prospective study of adherence and viral load in a large multi-center cohort of HIV-infected women. AIDS 16:2175–2182

    Article  Google Scholar 

  • Jain V, Sucupira MC, Bacchetti P, Hartogensis W, Diaz RS, Kallas EG, Janini LM, Liegler T, Pilcher CD, Grant RM, Cortes R, Deeks SG, Hecht FM (2011) Differential persistence of transmitted HIV-1 drug resistance mutation classes. J Infect Dis 203:1174–1181

    Article  Google Scholar 

  • Kane BM (2008) DRUGS, the straight facts: HIV/AIDS treatment drugs. Chelsea House Publishers, Philadelphia

    Google Scholar 

  • Kepler TB, Perelson AS (1998) Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc Natl Acad Sci 95:11514–11519

    Google Scholar 

  • Kuritzkes DR (2004) Preventing and managing antiretroviral drug resistance. AIDS Patient Care STDs 18(5):259–273

    Article  Google Scholar 

  • Larder BA, Darby G, Richman DD (1989) HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734

    Article  Google Scholar 

  • Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69(8):5087–5094

    Google Scholar 

  • Markowitz M, Louie M, Hurley A, Sun E, Mascio MD, Perelson AS, Ho DD (2003) A novel antiviral intervention results in more accurate assessment of human immunodeciency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038

    Article  Google Scholar 

  • McLean AR, Nowak MA (1992) Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS 6:71–79

    Article  Google Scholar 

  • Mohri H, Bonhoeffer S, Monard S, Perelson AS, Ho DD (1998) Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279:1223–1227

    Article  Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, London

    Google Scholar 

  • Nowak MA, Bonhoeffer S, Shaw GM, May RM (1997) Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J Theor Biol 184:203–217

    Article  Google Scholar 

  • Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, Wagener MM, Singh N (2000) Adherence to protease inhibitor therapy an outcomes in patients with HIV infection. Ann Intern Med 133:21–30

    Article  Google Scholar 

  • Perelson AS (2002) Modeling viral and immune system dynamics. Nature 2:28–36

    Google Scholar 

  • Perelson AS, Kirschner DE, De Boer R (1993) Dynamics of HIV infection of CD4+ lymphocytes in vivo. Math Biosci 114:81–125

    Article  MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  Google Scholar 

  • Perelson AS, Essunger P, Ho DD (1997) Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11: S17–S24

    Google Scholar 

  • Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, Markowitz M, Moore JP, Perelson AS, Ho DD (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:1782–1785

    Google Scholar 

  • Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci 97:7681–7686

    Article  MATH  Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007) Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull Math Biol 247:804–818

    MathSciNet  Google Scholar 

  • UNAIDS (2009) Report on the global AIDS epidemic. http://data.unaids.org/pub/Report/2009/JC1700_Epi_Update_2009_en.pdf

  • Vaidya NK, Rong L, Marconi VC, Kuritzkes DR, Deeks SG, Perelson AS (2010) Treatment mediated alterations in HIV preserve CD4+ T cell counts but have minimal effects on viral load. PLoS Comput Biol 6(11):e1001012. doi:10.1371/journal.pcbi.1001012

    Article  MathSciNet  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wainberg MA, Friedland G (1998) Public health implications of antiretroviral therapy and HIV drug resistance. JAMA 279:1977–1983

    Article  Google Scholar 

  • Weber J, Rangel HR, Meyer PR, Chakraborty B, Tadele M, Martinez MA, Martinez-Picado J, Marotta ML, Mirza M, Ruiz L, Clotet B, Wrin T, Petropoulos CJ, Quinones-Mateu ME (2003) A novel TaqMan real-time PCR assay to estimate ex vivo human immunodeciency virus type 1 fitness in the era of multi-target (pol and env) antiretroviral therapy. J Gen Virol 84:2217–2228

    Article  Google Scholar 

Download references

Acknowledgments

JMK was supported by a Wellcome Trust Uganda PhD Fellowship in Infection and Immunity, funded by a Wellcome Trust Strategic Award (grant number 084344). RAS was supported by the European Research Council under the 7th Framework Programme of the European Commission (PBDR: Grant Agreement Number 268540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Kitayimbwa.

Appendix: Proofs of results

Appendix: Proofs of results

Proposition 1

(Boundedness of solutions) The closed positive 5-dimensional orthant, defined as \(\mathbb{R }_+^5=\{x\in \mathbb{R }^5\backslash x\ge 0\}\) is positive invariant for System 1 and there exists \(M>0\) such that all solutions satisfy \(T(t),I_s(t),I_r(t),V_s(t),V_r(t)<M\) for all large \(t\).

Proof

Positive invariance follows from the fact that all solutions are uniformly bounded in a proper subset \(\varOmega \). To show that solutions of System 1 are bounded, let \(\hat{T}\) be the steady-state of susceptible cells present before infection. In a healthy individual, the T-cell population dynamics are regulated by \(f(T)=\lambda -\gamma T\), where, \(f(T)\) is a smooth function and \(f(T)>0\) for \(0<T<\hat{T}\). Furthermore, \(f(\hat{T})=0\) with \(f^\prime (\hat{T})<0\) and \(f(T)<0\) whenever \(T>\hat{T}\).

From the first equation of System 1, we note that \(\frac{dT}{dt}\le f(T)\). This means that there exists a \(t_0>0\) such that \(T(t)<\hat{T}+1\) for \(t>t_0\). Let \(S=\max \limits _{T\ge 0}f(T)\). Adding the first three equations of System 1, we obtain

$$\begin{aligned} \frac{dT}{dt}+\frac{dI_s}{dt}+\frac{dI_r}{dt}=f(T)-\delta (I_s+I_r)\le S-\delta {(I_s+I_r)}. \end{aligned}$$

Let \(A,B>0\) be such that \(\delta (A+B)>S+1\). Then as long as

$$\begin{aligned} T(t)+I_s(t)+I_r(t)\ge A+B+\hat{T}+1 \end{aligned}$$

and \(t>t_0\), we have that

$$\begin{aligned} \frac{dT}{dt}+\frac{dI_s}{dt}+\frac{dI_r}{dt}<-1. \end{aligned}$$

Clearly, there exists \(t_1>t_0\) such that

$$\begin{aligned} T(t)+I_s(t)+I_r(t)<A+B+\hat{T}+1 \end{aligned}$$

for all \(t>t_1\).

Adding the last two equations, we get

$$\begin{aligned} \frac{dV_s}{dt}+\frac{dV_r}{dt}=aI_s+k_2 aI_r-c(V_s+V_r). \end{aligned}$$

The asymptotic bound for \(I_s\) is \(I_s(t)<A+\hat{T}+1\) while that of \(I_r\) is \(I_r(t)<B+\hat{T}+1\). Considering the asymptotic bounds for both \(I_s\) and \(I_r\) together with the differential inequality

$$\begin{aligned} \frac{dV_s}{dt}+\frac{dV_r}{dt}\le -c(V_s+V_r)+a(A+k_2B+(1+k_2)\hat{T}+1+k_2), \end{aligned}$$

which holds for large \(t\), yields the asymptotic bound below;

$$\begin{aligned} c^{-1}a(A+k_2B+(1+k_2)\hat{T}+1+k_2). \end{aligned}$$

\(\square \)

Theorem 1

(Global stability of infection-free state) The infection-free equilibrium \(E_0\) is globally asymptotically stable provided \(R_0<1\).

Proof

To prove global stability of the disease free equilibrium \(E_0\), we use Theorem 1 adopted from Castillo-Chávez et al. (2002). We can write System 1 in the form

$$\begin{aligned} X^\prime (t)&= F(X,Y)\\ Y^\prime (t)&= G(X,Y), \quad G(X,0)=0 \end{aligned}$$

where \(X=(T)\) and \(Y=(I_s,I_r,V_s,V_r)\) with \(X\in \mathbb{R }_+\) and \(Y\in \mathbb{R }_+^4\).

Taking \(F(X,0)=[\lambda -\gamma T]\),

$$\begin{aligned} A=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -\delta&0&\frac{\beta \lambda }{\gamma }&0\\ 0&-\delta&0&\frac{k_1\beta \lambda }{\gamma }\\ (1-q)a&zk_2a&-c&0\\ qa&(1-z)k_2a&0&-c \end{array}\right] \end{aligned}$$

and

$$\begin{aligned} \hat{G}(X,Y)=\left[ \begin{array}{c} \frac{\beta \lambda }{\gamma }V_s-\beta TV_s\\ \frac{k_1\beta \lambda }{\gamma }V_r-k_1\beta TV_r\\ 0\\ 0 \end{array}\right]. \end{aligned}$$

Since \(\limsup \limits _{t\rightarrow \infty } T(t)\le \frac{\lambda }{\gamma },\) we have that \(\hat{G}(X,Y)\ge 0\) for all \((X,Y)\in \varOmega \).

Therefore \(G(X,Y)=AY-\hat{G}(X,Y), \text{ where} \hat{G}(X,Y)\ge 0\) for \((X,Y)\in \varOmega \), and applying Theorem 1 from Castillo-Chávez et al. (2002), the fixed point \(E_0\) is globally asymptotically stable, provided, \(R_0<1.\) \(\square \)

Theorem 2

(Uniqueness of endemic equilibrium) \(E_1\) is in \(\varOmega \) if and only if \(R_0>1\). Moreover, \(E_1\) is a unique endemic equilibrium in \(\varOmega \) whenever it exists.

Proof

Substituting \(E_1=(T^*,I_s^*,I_r^*,V_s^*,V_r^*)\) into System 1 shows that \(E_1\) is a stationary point. From second and third equations of System 1, we obtain

$$\begin{aligned} I_s^*+I_r^*=\frac{1}{\delta }(\lambda -\gamma T^*), \end{aligned}$$

then

$$\begin{aligned} T^*+I_s^*+I_r^*=\frac{\lambda }{\gamma }\frac{1}{R_0}+\frac{1}{\delta }\left(\lambda -\gamma \frac{\lambda }{\gamma }\frac{1}{R_0}\right)=\frac{\lambda }{\gamma }\frac{1}{R_0}+\frac{\lambda }{\delta }\left(1-\frac{1}{R_0}\right)\le \frac{\lambda }{\delta } \end{aligned}$$

as long as \(\delta \ge \gamma \).

Note that, as \(k_1k_2<1\),

$$\begin{aligned} (1-q-z)-(1-q-k_1k_2z)<0. \end{aligned}$$

Thus,

$$\begin{aligned} (1-q-z)^2-(1-q-z)[(1-q)+k_1k_2(1-z)]<-k_1k_2(1-q-z) \end{aligned}$$

(under the assumption that \(1-q-z>0\)). Multiplying by \(4\) and adding \([(1-q)+k_1k_2(1-z)]^2\) to both sides of the inequality leads to

$$\begin{aligned}&\{2(1-q-z)-[(1-q)+k_1k_2(1-z)]\}^2\\&\quad <[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z). \end{aligned}$$

Therefore,

$$\begin{aligned}&2(1-q-z)-[(1-q)+k_1k_2(1-z)]\\&\quad <\sqrt{[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z)}. \end{aligned}$$

and so

$$\begin{aligned} 2(1-q-z)&< \frac{1}{2}\left\{ (1-q)+k_1k_2(1-z)\right.\nonumber \\&+\left.\sqrt{[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z)}\right\} . \end{aligned}$$

Hence, multiplying by \(\bar{R_0}=\frac{a\beta \lambda }{\delta \gamma c}\), we obtain \((1-q-z)\bar{R_0}<R_0\) (and then \((1-q-z)k_1k_2\bar{R_0}<R_0\)). Therefore \(I_s^*>0\) (and \(I_r^*\)) if and only if \(R_0>1\), which implies \(E_1\in \varOmega \,\text{ iff} R_0>1\)

To show that \(E_1\) is the only endemic equilibrium in \(\varOmega \), assume that there is another such equilibrium \(E_2=(\hat{T},\hat{I_s},\hat{I_r},\hat{V_s},\hat{V_r})\) in \(\varOmega \). Note that by solving for stationary points, \(\hat{T}\) must be a solution of the quadratic equation

$$\begin{aligned} \left(\frac{a\beta }{c}\right)^2(1-q-z)k_1k_2\hat{T}^2-[(1-q)+(1-z)k]\left(\frac{a\beta }{c}\right)\delta \hat{T}+\delta ^2=0. \end{aligned}$$

Then

$$\begin{aligned} \hat{T}&= \frac{c\delta }{2k_1k_2a\beta (1-q-z)}\left[ (1-q)+k_1k_2(1-z)\right.\nonumber \\&+\left.\sqrt{[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z)}\right] \end{aligned}$$

(note that the other root of the above quadratic equation is \(T^*\)). As for \(E_1,\,\hat{I_s}+\hat{I_r}=\lambda -\gamma \hat{T},\) so if \(\lambda -\gamma \hat{T}<0\), then \(E_2\notin \varOmega \). So assume that \(\lambda -\gamma \hat{T}>0\). Thus

$$\begin{aligned} \hat{I_r}=\frac{q(\lambda -\gamma \hat{T})}{\delta -(1-q-z)\frac{a\beta }{c}\hat{T}}. \end{aligned}$$

Since \(k_1k_2<1\) we have

$$\begin{aligned} k_1k_2+(1-q-z)<(1-q)+k_1k_2(1-z) \end{aligned}$$

and then

$$\begin{aligned} (2k_1k_2)^2-4k_1k_2[(1-q)+k_1k_2(1-z)]<-4k_1k_2(1-q-z). \end{aligned}$$

This implies that

$$\begin{aligned} \{2k_1k_2-[(1-q)+k_1k_2(1-z)]\}^2<[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z) \end{aligned}$$

and so

$$\begin{aligned} 2k_1k_2-[(1-q)+k_1k_2(1-z)]<\sqrt{[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z)}. \end{aligned}$$

Thus

$$\begin{aligned} 1&< \frac{1}{2k_1k_2}\left\{ [(1-q)+k_1k_2(1-z)]\right.\nonumber \\&+\left.\sqrt{[(1-q)+k_1k_2(1-z)]^2-4k_1k_2(1-q-z)}\right\} . \end{aligned}$$

This implies that \(\delta -(1-q-z)\frac{a\beta }{c}\hat{T}<0\) and so \(\hat{I_r}<0.\) Therefore \(E_2\notin \varOmega \). \(\square \)

Theorem 3

(Local stability of endemic equilibrium) If \(R_0>1\), the unique endemic equilibrium \(E_1\) is locally asymptotically stable.

Using the standard linearization of the model to determine the local stability of \(E_1\) is very laborious to track mathematically. For this reason, we employ the centre manifold theory (Carr 1981) as described in Castillo-Chávez and Song (2004) to establish the local asymptotic stability of \(E_1\).

Making the following change of variables; \(T=x_1,~I_s=x_2,~I_r=x_3,~V_s=x_4\) and \(V_r=x_5\). Therefore, we get

$$\begin{aligned} \frac{dX}{dt}=F=(f_1,f_2,f_3,f_4,f_5)^T \end{aligned}$$

such that

$$\begin{aligned} x_1^\prime (t)&= f_1 = \lambda -\gamma x_1-\beta x_1x_4-k_1\beta x_1x_5 \\ x_2^\prime (t)&= f_2 = (1-q)\beta x_1x_4+zk_1\beta x_1x_5-\delta x_2\\ x_3^\prime (t)&= f_3 = q\beta x_1x_4+(1-z)k_1\beta x_1x_5-\delta x_3\\ x_4^\prime (t)&= f_4 = ax_2-cx_4\\ x_5^\prime (t)&= f_5 = k_2ax_3-cx_5 \end{aligned}$$

The corresponding Jacobian matrix at the disease free equilibrium is given by

$$\begin{aligned} J(E_0)=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} -\gamma&0&0&-\frac{\beta \lambda }{\gamma }&-\frac{k_1\beta \lambda }{\gamma }\\ 0&-\delta&0&\frac{(1-q)\beta \lambda }{\gamma }&\frac{zk_1\beta \lambda }{\gamma } \\ 0&0&-\delta&\frac{q\beta \lambda }{\gamma }&\frac{(1-z)k_1\beta \lambda }{\gamma } \\ 0&a&0&-c&0\\ 0&0&k_2a&0&-c \end{array} \right]. \end{aligned}$$

If \(\beta \) is taken as the bifurcation point and we consider the case when \(R_0=1\), then

$$\begin{aligned} \beta \!=\!\beta ^*\!=\!\frac{2\delta \gamma c}{a\lambda (k_1k_2(1\!-\!z)\!+\!(1\!-\!q)\!+\!\sqrt{[(1-q)\!+\!k_1k_2 (1\!-\!z)]^2-4k_1k_2(1\!-\!q\!-\!z)})}. \end{aligned}$$

The resultant linearized system of the transformed model with \(\beta =\beta ^*\) has a simple zero eigenvalue. This means that the centre manifold theory (Carr 1981) can be employed to analyze the dynamics of the model near the bifurcation parameter value \(\beta ^*\). The Jacobian, \(J(E_0)\) at \(\beta ^*\) has a right eigenvalue associated with the zero eigenvalue given by \(u=[u_1,u_2,u_3,u_4,u_5]\), where

$$\begin{aligned} u_1&= \frac{k_1\beta \lambda [(1-q-z)a\beta \lambda -\delta c\gamma ]}{\gamma ^2[\delta c\gamma -(1-q)a\beta \lambda ]}u_5,\\ u_2&= \frac{zk_1\beta \lambda c}{\delta c\gamma -(1-q)a\beta \lambda }u_5,\\ u_3&= \frac{c}{k_2a}u_5,\\ u_4&= \frac{zk_1\beta \lambda a}{\delta c\gamma -(1-q)a\beta \lambda }u_5,\\ u_5&= u_5>0. \end{aligned}$$

The left eigenvector for \(J(E_0)\) associated with the zero eigenvalue is given by \(v=[v_1,v_2,v_3,v_4,v_5]\), where

$$\begin{aligned} v_1&= 0 ,\\ v_2&= \frac{qk_2a^2\beta \lambda }{\delta [\delta c\gamma -(1-q)a\beta \lambda ]}v_5,\\ v_3&= \frac{k_2a}{\delta }v_5,\\ v_4&= \frac{qk_2a\beta \lambda }{\delta c\gamma -(1-q)a\beta \lambda }v_5,\\ v_5&= v_5>0. \end{aligned}$$

We state without proof, Theorem 4 as outlined in Castillo-Chávez and Song (2004).

Theorem 4

(Castillo-Chávez and Song) Consider the following general system of ordinary differential equations with a parameter \(\phi \)

$$\begin{aligned} \frac{dx}{dt}F(x,\phi ),~f:\mathbb{R }^n\times \mathbb{R } \text{ and} f\in \mathbb{R }^2(\mathbb{R }^n\times \mathbb{R }), \end{aligned}$$
(8)

where \(0\) is the equilibrium of the system i.e, \(f(0,\phi )=0\) for all \(\phi \) and assume

  1. A1:

    \(A=D_xf(0,0)=\left(\frac{\partial f_i}{\partial x_j}(0,0)\right)\) is the linearization of System 8 around the equilibrium \(0\) evaluated with \(\phi =0\). Then, zero is a simple eigenvalue of \(A\) and other eigenvalues of \(A\) have negative real parts.

  2. A2:

    Matrix \(A\) has a right eigenvector \(u\) and a left eigenvector \(v\) corresponding to the zero eigenvalue.

Let \(f_k\) be the \(kth\) component of \(f\) and

$$\begin{aligned} \hat{a}&= \sum \limits _{k,i,j=1}^{n}v_ku_iu_j\frac{\partial ^2f_k}{\partial x_i\partial x_j}(0,0),\\ \hat{b}&= \sum \limits _{k,i=1}^{n}v_ku_i\frac{\partial ^2f_k}{\partial x_i\partial \phi }(0,0). \end{aligned}$$

The local dynamics of 8 are completely governed by \(\hat{a}\) and \(\hat{b}\) as follows:

  1. (i)

    \(\hat{a}>0, ~\hat{b}>0\). When \(\phi <0\) with \(|\phi |<<1,\,0\) is locally asymptotically stable and there exists a positive unstable equilibrium; when \(0<\phi << 1,\,0\) is unstable and there exists a negative and locally asymptotically stable equilibrium.

  2. (ii)

    \(\hat{a}<0, ~\hat{b}<0\). When \(\phi <0\) with \(|\phi |<<1,\,0\) is unstable; when \(0<\phi << 1,\,0\) is locally asymptotically stable and there exists a positive unstable equilibrium.

  3. (iii)

    \(\hat{a}>0, ~\hat{b}<0\). When \(\phi <0\) with \(|\phi |<<1,\,0\) is unstable and there exists a locally asymptotically stable negative equilibrium; when \(0<\phi << 1,\,0\) is stable and a positive unstable equilibrium appears.

  4. (iv)

    \(\hat{a}<0, ~\hat{b}>0\). When \(\phi \) changes from negative to positive, \(0\) changes its stability from stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally asymptotically stable.

 

1.1 Computation of \(\hat{a}\) and \(\hat{b}\)

For System 1, the associated nonzero partial derivatives of \(F\) at the disease free equilibrium \(E_0\) are given by

$$\begin{aligned}&\frac{\partial ^2f_1}{\partial x_1\partial x_4} =-\beta ,~~\frac{\partial ^2f_1}{\partial x_1 \partial x_5}=- k_1\beta ,~~\frac{\partial ^2f_2}{\partial x_1 \partial x_4}=(1- q)\beta ,~~\frac{\partial ^2f_2}{\partial x_1 \partial x_5} =zk_1\beta ,\\&\quad \frac{\partial ^2f_3}{\partial x_1\partial x_4} =q\beta ~~ \frac{\partial ^2f_3}{\partial x_1 \partial x_5}=(1- z)k_1\beta . \end{aligned}$$

Therefore, it follows that

$$\begin{aligned} \hat{a}&= -\beta ^* v_1u_1u_4-k_1 \beta ^* v_1u_1u_5+(1-q) \beta ^* v_2u_1u_4+zk_1 \beta ^* v_2u_1u_5 + q \beta ^* v_3u_1u_4+\,(1-z) k_1\beta ^* v_3u_1u_5\nonumber \\&= (1-q)\beta ^* v_2u_1u_4+zk_1 \beta ^* v_2u_1u_5+q \beta ^* v_3u_1u_4+\,(1-z) k_1\beta ^* v_3u_1u_5\nonumber \\&= \frac{k_1^2k_2a \beta ^{*2} \lambda [(1-q-z)a \beta ^*\lambda - \delta \gamma c] \theta }{\delta \gamma ^2[\delta c\gamma - (1-q)a \beta ^*\lambda ] ^3} \end{aligned}$$
(9)

where

$$\begin{aligned} \theta&= [z(1-q)qa^2\beta ^{*2}\lambda ^2+(za\beta ^*\lambda +qza\lambda )(\delta c\gamma -(1-q)a\beta ^*\lambda )\\&\quad +(1-z)(\delta c\gamma -(1-q)a\beta ^*\lambda )^2] \end{aligned}$$

It is observed that

$$\begin{aligned} \delta c\gamma -(1-q)a\beta ^*\lambda >0 \end{aligned}$$

for all possible parameter values. Assume that \(\delta c\gamma -(1-q)a\beta ^*\lambda <0\), then, substituting for the value of \(\beta ^*\), gives

$$\begin{aligned} k_1k_2(1-z)+(1-q)+\sqrt{[(1-q)\!+\!k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}\!-\!2(1\!-\!q). \end{aligned}$$

This simplifies to

$$\begin{aligned} k_1k_2qz<0 \end{aligned}$$

which is clearly not possible. Therefore, \(\delta c\gamma -(1-q)a\beta ^*\lambda \) is always positive.

We note that \(\hat{a}>0\) provided \(\delta c\gamma -(1-q)a\beta ^* \lambda >0\) and \((1-q-z)a\beta ^*c-\delta c\gamma >0.\) Substituting for the value of \(\beta ^*\), we get that \(\hat{a}>0\) whenever;

$$\begin{aligned} k_1k_2(1-z)+\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)})>(1-q) \end{aligned}$$

and

$$\begin{aligned} k_1k_2(1-z)+\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)})+2z<(1-q). \end{aligned}$$

This means that

$$\begin{aligned} k_1k_2(1-z)+\Delta +2z<1-q<k_1k_2(1-z)+\Delta \end{aligned}$$

where \(\Delta =\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)})\). This is clearly not possible. Therefore \(\hat{a}<0\).

The value of the parameter \(b\) is associated with following non-vanishing partial derivatives of \(F\),

$$\begin{aligned} \frac{\partial ^2f_1}{\partial x_4\partial \beta ^*}&= -\frac{\lambda }{\gamma },\quad \frac{\partial ^2f_1}{\partial x_5\partial \beta ^*}=-\frac{k_1\lambda }{\gamma },\quad \frac{\partial ^2f_2}{\partial x_4\partial \beta ^*}=\frac{(1-q)\lambda }{\gamma },\quad \frac{\partial ^2f_2}{\partial x_5\partial \beta ^*}\\&= \frac{zk_1\lambda }{\gamma },\quad \frac{\partial ^2f_3}{\partial x_4\partial \beta ^*}=\frac{q\lambda }{\gamma },\quad \frac{\partial ^2f_3}{\partial x_5\partial \beta ^*}=\frac{(1-z)k_1\lambda }{\gamma }. \end{aligned}$$

Therefore, it follows that

$$\begin{aligned} \hat{b}&= \frac{(1-q)\lambda }{\gamma }v_2u_4+ \frac{zk_1\lambda }{\gamma }v_2u_5+\frac{q\lambda }{\gamma }v_3u_4+ \frac{(1-z)k_1\lambda }{\gamma }v_3u_5\nonumber \\&= \frac{qzk_1k_2a^2\beta ^*\lambda ^2cv_5u_5}{[\delta c\gamma -(1-q)a\beta ^*\lambda ]^2}+\frac{k_1k_2a\lambda [(1-z)\delta c\gamma -(1-q-z)a\beta ^*\lambda ]v_5u_5}{\gamma \delta [\delta c\gamma -(1-q)a\beta ^*\lambda ]} \end{aligned}$$
(10)

Since \(\delta c\gamma -(1-q)a\beta ^*\lambda >0\), in order to show that \(\hat{b}>0\), it is enough to show that \((1-z)\delta c\gamma -(1-q-z)a\beta ^*\lambda >0\). If we assume that \((1-z)\delta c\gamma -(1-q-z)a\beta ^*\lambda <0\), then

$$\begin{aligned} (1\!-\!z)\sqrt{[(1\!-\!q)\!+\!k_1k_2 (1\!-\!z)]^2\!-\!4k_1k_2(1\!-\!q\!-\!z)}<(1\!-\!q\!-\!z)\!-\!k_1k_2(1\!-\!z)^2\!-\!qz. \end{aligned}$$

This reduces to

$$\begin{aligned} 2qz(1-q-z)<0 \end{aligned}$$

which is not possible since \(q,z<<1.\) Therefore \(\hat{b}>0\).

Thus \(\hat{a}<0\) and \(\hat{b}>0\) and from Theorem 4 item (iv), if \(R_0>1\), the unique endemic equilibrium \(E_1\) is locally asymptotically stable.

Theorem 5

(Sensitive strain dominance) The sensitive strain is dominant at endemic equilibrium \(E_1\) (i.e., \(V_s^*>V_r^*\)) whenever

$$\begin{aligned} \frac{z}{q}>\frac{k_2\left(1-(1-q-z)\frac{\bar{R_0}}{R_0}\right)}{\left(1-(1-q-z)k_1k_2\frac{\bar{R_0}}{R_0}\right)}. \end{aligned}$$

Proof

The sensitive strain will dominate dynamics when \(V_s^*>V_r^*\) This happens when

$$\begin{aligned} \frac{a}{c}I_s^*>\frac{k_2a}{c}I_r^*. \end{aligned}$$

Substituting for \(I_s^*\) and \(I_r^*\) and simplifying, we get

$$\begin{aligned} z\left(1-(1-q-z)k_1k_2\frac{\bar{R_0}}{R_0}\right)>k_2q\left(1-(1-q-z)\frac{\bar{R_0}}{R_0}\right). \end{aligned}$$

Therefore, for the sensitive strain to be dominant, it is required that

$$\begin{aligned} \frac{z}{q}>\frac{k_2\left(1-(1-q-z)\frac{\bar{R_0}}{R_0}\right)}{\left(1-(1-q-z)k_1k_2\frac{\bar{R_0}}{R_0}\right)}. \end{aligned}$$

\(\square \)

Theorem 6

(Effect of forward mutations on \(R_0\)) Given positive forward mutations, \(q>0\), and positive fitness cost of resistant strain, \(k_1,k_2<1\), we have \(R_0\le \bar{R_0}.\)

Proof

It is enough to show that

$$\begin{aligned} (1-q)+k_1k_2(1-z) +\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}\le 2. \end{aligned}$$

When \(q=z=0\) and \(k_1=k_2=1\), we have

$$\begin{aligned} (1-q)+k_1k_2(1-z) +\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}= 2 \end{aligned}$$

and \(R_0=\bar{R_0}.\) This is the case when we have no drug resistance but a single sensitive strain. Let \(q\not =0,\,z\not =0\) and \(k_1,k_2\in (0,1)\), and suppose that

$$\begin{aligned} (1-q)+k_1k_2(1-z) +\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}> 2. \end{aligned}$$

This means that

$$\begin{aligned} \sqrt{[(1-q)+k_1k_2 (1\!-\!z)]^2-4k_1k_2(1-q-z)}> 2\!-\!k_1k_2(1\!-\!z)\!-\!(1\!-\!q). \end{aligned}$$
(11)

Since \(k_1,k_2\in (0,1),\,q\not =0,\,z\not =0\) and \(q,z<<1\), then \(0<k_1k_2(1-z)+(1-q)<2.\) Squaring both sides of (4), we get

$$\begin{aligned}&[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)>4\\&\quad +k_1^2k_2^2(1-z)^2+(1-q)^2-4k_1k_2(1-z)-4(1-q)+2k_1k_2(1-z)(1-q). \end{aligned}$$

On simplification,

$$\begin{aligned} k_1k_2z(1-q)-k_1k_2(1-q)>1-k_1k_2(1-z)-(1-q). \end{aligned}$$

Collecting like terms,

$$\begin{aligned} q[k_1k_2(1-z)-1]>0 \end{aligned}$$

which is a contradiction since \(k_1k_2(1-z)-1<0\). Therefore,

$$\begin{aligned} R_o<\bar{R_0}. \end{aligned}$$

\(\square \)

Theorem 7

(Effect of backward mutations on \({R_0}\)) Whenever \(q>0\) and \(k_1,k_2<1,\) the presence of backward mutations \(z>0\) increases the basic reproductive number (i.e., \(R_0>R_0^\prime \)).

Proof

We need to show that

$$\begin{aligned} (1\!-\!q)<\frac{1}{2}\left[ (1\!-\!q)\!+\!k_1k_2(1\!-\!z)\!+\! \sqrt{[(1-q)\!+\!k_1k_2 (1\!-\!z)]^2\!-\!4k_1k_2(1\!-\!q\!-\!z)} \right] \end{aligned}$$

which is equivalent to

$$\begin{aligned} (1-q)-k_1k_2(1-z)< \sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}. \end{aligned}$$

We proceed by assuming the opposite, i.e.,

$$\begin{aligned} (1-q)-k_1k_2(1-z)\ge \sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)} \end{aligned}$$

then, squaring both sides

$$\begin{aligned}{}[(1-q)-k_1k_2(1-z)]^2\ge [(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z) \end{aligned}$$

which reduces to

$$\begin{aligned} (1-q)(1-z)\le 1-q-z \end{aligned}$$

or equivalently,

$$\begin{aligned} qz\le 0 \end{aligned}$$

which contradicts our assumptions. \(\square \)

Theorem 8

(Rate of change of \(R_0\) with respect to mutations) Given \(R_0\) as described in 3,

$$\begin{aligned} \frac{\partial R_0}{\partial q}<0 \quad \text{ and} \frac{\partial R_0}{\partial z}>0. \end{aligned}$$

Proof

$$\begin{aligned} \frac{\partial R_0}{\partial q}=\frac{a\beta \lambda }{2\delta \gamma c}\left[-1+\frac{[k_1k_2z+(k_1k_2+q-1)]}{\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}} \right] \end{aligned}$$

and

$$\begin{aligned} \frac{\partial R_0}{\partial z}=\frac{k_1k_2a\beta \lambda }{2\delta \gamma c}\left[-1+\frac{[k_1k_2z+(1+q-k_1k_2)]}{\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}} \right]. \end{aligned}$$

\(\frac{\partial R_0}{\partial q}<0\) iff

$$\begin{aligned}{}[k_1k_2z+(k_1k_2+q-1)]<{\sqrt{[(1-q)+k_1k_2 (1-z)]^2-4k_1k_2(1-q-z)}}. \end{aligned}$$

Since the term inside the square root is positive (\(k_1,k_2\in (0,1)\) and \(q,z<<1\)), it is enough to show that

$$\begin{aligned}{}[k_1k_2z+(k_1k_2+q-1)]^2<k_1^2k_2^2z^2+2k_1k_2z(1+q-k_1k_2)+(k_1k_2+q-1)^2. \end{aligned}$$

This reduces to

$$\begin{aligned} 2k_1k_2z(k_1k_2-1)<2k_1k_2z(1-k_1k_2) \quad \text{ or} \quad k_1k_2<1 \end{aligned}$$

which is satisfied in our region of interest, i.e., when \(k_1,k_2\in (0,1)\).

Similarly, \(\frac{\partial R_0}{\partial z}>0\) iff

$$\begin{aligned}{}[k_1k_2z+(1+q-k_1k_2)]>{\sqrt{k_1^2k_2^2z^2+2k_1k_2z(1+q-k_1k_2)+(k_1k_2+q-1)^2}}. \end{aligned}$$

It is enough to show that

$$\begin{aligned}{}[k_1k_2z+(1+q-k_1k_2)]^2>k_1^2k_2^2z^2+2k_1k_2z(1+q-k_1k_2)+(k_1k_2+q-1)^2 \end{aligned}$$

which reduces to

$$\begin{aligned} 4q>4qk_1k_2 \quad \mathrm {or}\quad 1>k_1k_2 \end{aligned}$$

which is satisfied in our region of interest, i.e., when \(k_1,k_2\in (0,1).\) Therefore,

$$\begin{aligned} \frac{\partial R_0}{\partial q}<0 \quad \text{ and}\quad \frac{\partial R_0}{\partial z}>0. \end{aligned}$$

\(\square \)

Theorem 9

(Sensitive strain dominance during ART) The sensitive strain dominates dynamics at the endemic equilibrium during treatment if

$$\begin{aligned} \frac{z}{q}>\frac{(1-p_2\varepsilon _{pi})}{(1-\varepsilon _{pi})}\frac{k_2\left(1-(1-q-z)\varepsilon _{s}\frac{\bar{R_0}}{R_0}\right)}{\left(1-(1-q-z)\varepsilon _{r}k_1k_2\frac{\bar{R_0}}{R_0}\right)}. \end{aligned}$$

Proof

The proof follows same argument as for Theorem 5. \(\square \)

Theorem 10

(Rate of change of \(R_0\) with respect to mutations during ART) Given \(\hat{R_0}\) as described in 6,

$$\begin{aligned} \frac{\partial \hat{R_0}}{\partial q}>0\quad \text{ and} \quad \frac{\partial \hat{R_0}}{\partial z}<0 \end{aligned}$$

whenever \(k_1k_2\varepsilon _r>\varepsilon _s\).

Proof

$$\begin{aligned} \frac{\partial \hat{R_0}}{\partial q}=\frac{a\beta \lambda \varepsilon _s }{2\delta \gamma c}\left[-1+\frac{-\varepsilon _s(1-q)+k_1k_2\varepsilon _r(1+z)}{\sqrt{[\varepsilon _s(1-q)+\varepsilon _r k_1k_2(1-z)]^2-4\varepsilon _s\varepsilon _rk_1k_2(1-q-z)}} \right] \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \hat{R_0}}{\partial z}\!=\!\frac{k_1k_2a\beta \lambda \varepsilon _r}{2\delta \gamma c}\left[-1\!+\!\frac{\varepsilon _s(1+q)\!-\!k_1k_2\varepsilon _r(1\!-\!z)}{\sqrt{[\varepsilon _s(1-q)+\varepsilon _r k_1k_2(1-z)]^2-4\varepsilon _s\varepsilon _rk_1k_2(1\!-\!q\!-\!z)}} \right]. \end{aligned}$$

\(\frac{\partial \hat{R_0}}{\partial q}>0\) iff

$$\begin{aligned} -\varepsilon _s(1\!-\!q)\!+\!k_1k_2\varepsilon _r(1\!+\!z)>{\sqrt{[\varepsilon _s(1\!-\!q)\!+\!\varepsilon _r k_1k_2(1\!-\!z)]^2\!-\!4\varepsilon _s\varepsilon _rk_1k_2(1\!-\!q\!-\!z)}}. \end{aligned}$$

Since the term inside the square root is positive \((k_1,k_2\in (0,1)\,\text{ and}\,q,z<<1)\), it is enough to show that

$$\begin{aligned}{}[-\varepsilon _s(1-q)+k_1k_2\varepsilon _r(1+z)]^2&> [\varepsilon _s(1-q)+\varepsilon _r k_1k_2(1-z)]^2\\&-4\varepsilon _s\varepsilon _rk_1k_2(1-q-z). \end{aligned}$$

This reduces to

$$\begin{aligned} k_1k_2\varepsilon _rz+\varepsilon _s(1-q-z)>\varepsilon _s(1-q) \quad \text{ or} \quad k_1k_2\varepsilon _r>\varepsilon _s \end{aligned}$$

which is satisfied depending on the parameters \(k_1\) and \(k_2\) and the treatment parameters \(p_1,p_2,\varepsilon _{rt}\) and \(\varepsilon _{pi}\).

Similarly, \(\frac{\partial \hat{R_0}}{\partial z}<0\) iff

$$\begin{aligned} \varepsilon _s(1+q)\!-\!k_1k_2\varepsilon _r(1-z)<{\sqrt{[\varepsilon _s(1-q)+\varepsilon _r k_1k_2(1\!-\!z)]^2\!-\!4\varepsilon _s\varepsilon _rk_1k_2(1\!-\!q\!-\!z)}}. \end{aligned}$$

It is enough to show that

$$\begin{aligned}{}[\varepsilon _s(1+q)-k_1k_2\varepsilon _r(1-z)]^2<[\varepsilon _s(1\!-\!q)\!+\!\varepsilon _r k_1k_2(1\!-\!z)]^2-4\varepsilon _s\varepsilon _rk_1k_2(1\!-\!q\!-\!z) \end{aligned}$$

which reduces to

$$\begin{aligned} q\varepsilon _s+\varepsilon _rk_1k_2(1-q-z)<\varepsilon _rk_1k_2(1-z) \quad \text{ or} \quad \varepsilon _s<k_1k_2\varepsilon _r \end{aligned}$$

which is satisfied depending on the parameters \(k_1\) and \(k_2\) and the treatment parameters \(p_1,p_2,\varepsilon _{rt}\) and \(\varepsilon _{pi}\). Therefore,

$$\begin{aligned} \frac{\partial \hat{R_0}}{\partial q}>0 \quad \text{ and}\quad \frac{\partial \hat{R_0}}{\partial z}<0 \end{aligned}$$

whenever \(k_1k_2\varepsilon _r>\varepsilon _s\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitayimbwa, J.M., Mugisha, J.Y.T. & Saenz, R.A. The role of backward mutations on the within-host dynamics of HIV-1. J. Math. Biol. 67, 1111–1139 (2013). https://doi.org/10.1007/s00285-012-0581-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0581-2

Keywords

Mathematics Subject Classification

Navigation