Skip to main content
Log in

Trail formation based on directed pheromone deposition

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose an Individual-Based Model of ant-trail formation. The ants are modeled as self-propelled particles which deposit directed pheromone particles and interact with them through alignment interaction. The directed pheromone particles intend to model pieces of trails, while the alignment interaction translates the tendency for an ant to follow a trail when it meets it. Thanks to adequate quantitative descriptors of the trail patterns, the existence of a phase transition as the ant–pheromone interaction frequency is increased can be evidenced. We propose both kinetic and fluid descriptions of this model and analyze the capabilities of the fluid model to develop trail patterns. We observe that the development of patterns by fluid models require extra trail amplification mechanisms that are not needed at the Individual-Based Model level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki I (1982) A simulation study on the schooling mechanism in fish. Bull Japan Soc Sci Fish 48: 1081–1088

    Article  Google Scholar 

  • Beckers R, Deneubourg JL, Goss S (1992) Trail laying behaviour during food recruitment in the ant Lasius niger (L). Insectes Sociaux 39: 59–72

    Article  Google Scholar 

  • Beckers R, Deneubourg JL, Goss S, Pasteels JM (1990) Collective decision making through food recruitment. Insectes Sociaux 37: 258–267

    Article  Google Scholar 

  • Bernadou A, Fourcassié V (2008) Does substrate coarseness matter for foraging ants? an experiment with Lasius niger (Hymenoptera; formicidae). J Insect Physiol 54: 534–542

    Article  Google Scholar 

  • Blanchet A, Dolbeault J, Perthame B (2006) Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differ Equ 44: 1–33

    MathSciNet  Google Scholar 

  • Boissard E, Degond P (2012, in preparation)

  • Bossert WH, Wilson EO (1963) The analysis of olfactory communication among animals. J Theor Biol 5: 443–469

    Article  Google Scholar 

  • Calenbuhr V, Deneubourg JL (1992) A model for osmotropotactic orientation (I)*. J Theor Biol 158: 359–393

    Article  Google Scholar 

  • Calenbuhr V, Chretien L, Deneubourg JL, Detrain C (1992) A model for osmotropotactic orientation (II)*. J Theor Biol 158: 395–407

    Article  Google Scholar 

  • Calvez V, Carrillo JA (2006) Volume effects in the Keller–Segel model: energy estimates preventing blow-up. Journal de Mathématiques Pures et Appliquées 86: 155–175

    Article  MathSciNet  MATH  Google Scholar 

  • Casellas E, Gautrais J, Fournier R, Blanco S, Combe M, Fourcassié V, Theraulaz G, Jost C (2008) From individual to collective displacements in heterogeneous environments. J Theor Biol 250: 424–434

    Article  Google Scholar 

  • Cercignani C, Illner R, Pulvirenti M (1994) The mathematical theory of dilute gases. Springer, Berlin

    MATH  Google Scholar 

  • Chaté H, Ginelli F, Montagne R (2006) Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys Rev Lett 96: 180602

    Article  Google Scholar 

  • Couzin ID, Franks NR (2003) Self-organized lane formation and optimized traffic flow in army ants. Proc Roy Soc B Biol Sci 270: 139–146

    Article  Google Scholar 

  • Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the argentine ant. J Insect Behav 3: 159–168

    Article  Google Scholar 

  • Detrain C, Natan C, Deneubourg JL (2001) The influence of the physical environment on the self-organized foraging patterns of ants. Naturwissenschaften 88: 171–174

    Article  Google Scholar 

  • Edelstein-Keshet L (1994) Simple models for trail-following behaviour; trunk trails versus individual foragers. J Math Biol 32: 303–328

    Article  MATH  Google Scholar 

  • Edelstein-Keshet L, Watmough J, Ermentrout GB (1995) Trail following in ants: individual properties determine population behaviour. Behav Ecol Sociobiol 36: 119–133

    Article  Google Scholar 

  • Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 70: 361–391

    Article  MathSciNet  Google Scholar 

  • Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160: 97–133

    Article  Google Scholar 

  • Filbet F, Laurençot P, Perthame B (2005) Derivation of hyperbolic models for chemosensitive movement. J Math Biol 50: 189–207

    Article  MathSciNet  MATH  Google Scholar 

  • Goss S, Aron S, Deneubourg JL, Pasteels JM (1989) Self-organized shortcuts in the argentine ant. Naturwissenschaften 76: 579–581

    Article  Google Scholar 

  • Grassé PP (1986) Termitologia: comportement, socialité, écologie, évolution, systématique. Masson, France

    Google Scholar 

  • Grünbaum D (2006) Align in the sand. Science 312: 1320–1322

    Article  Google Scholar 

  • Haefner JW, Crist TO (1994) Spatial model of movement and foraging in harverster ants (Pogonomyrmes) (I): the roles of memory and communication. J Theor Biol 166: 299–313

    Article  Google Scholar 

  • Hangartner W (1969) Trail laying in the subterranean ant, Acanthomyops interjectus. J Insect Physiol 15: 1–4

    Article  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61: 751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson DE, Châline N (2007) Modulation of pheromone trail strength with food quality in Pharaoh’s ant, Monomorium pharaonis. Animal Behav 74: 463–470

    Article  Google Scholar 

  • Jeanson R, Deneubourg J-L, Grimal A, Theraulaz G (2004) Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messior barbarus. Behav Ecol Sociobiol 55: 388–394

    Article  Google Scholar 

  • John A, Schadschneider A, Chowdhury D, Nishinari K (2004) Collective effects in traffic on bi-directional ant trails. J Theor Biol 231: 279–285

    Article  MathSciNet  Google Scholar 

  • Katz Y, Tunstrom K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci 108: 18720–18725

    Article  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30: 225–234

    Article  Google Scholar 

  • Lukeman R, Li Y-X, Edelstein-Keshet L (2010) Inferring individual rules from collective behavior. Proc Natl Acad Sci 107: 12576–12580

    Article  Google Scholar 

  • Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34: 1–17

    Article  MATH  Google Scholar 

  • Nishinari K, Sugawara K, Kazama T, Schadschneider A, Chowdhury D (2006) Modelling of self-driven particles: Foraging ants and pedestrians. Phys A Stat Mech Appl 372: 132–141

    Article  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62: 1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Stevens A (1997) Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J Appl Math 57: 1044–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Painter KJ (2009) Modelling cell migration strategies in the extracellular matrix. J Math Biol 58: 511–543

    Article  MathSciNet  Google Scholar 

  • Peters K, Johansson A, Dussutour A, Helbing D (2006) Analytical and numerical investigation of ant behavior under crowded conditions. Adv Complex Syst 9: 337–352

    Article  MATH  Google Scholar 

  • Rauch EM, Millonas MM, Chialvo DR (1995) Pattern formation and functionality in swarm models. Phys Lett A 207: 185–193

    Article  MathSciNet  MATH  Google Scholar 

  • Schweitzer F, Lao K, Family F (1997) Active random walkers simulate trunk trail formation by ants. Biosystems 41: 153–166

    Article  Google Scholar 

  • Stevens A (2000) The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J Appl Math 61: 183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw Hill, New York

    Google Scholar 

  • Tao T, Nakagawa H, Yamasaki M, Nishimori H (2004) Flexible foraging of ants under unsteadily varying environment. J Phys Soc Japan 73: 2333–2341

    Article  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75: 1226–1229

    Article  Google Scholar 

  • Vincent AD, Myerscough MR (2004) The effect of a non-uniform turning kernel on ant trail morphology. J Math Biol 49: 391–432

    Article  MathSciNet  MATH  Google Scholar 

  • Watmough J, Edelstein-Keshet L (1995) A one dimensional model of trail propagation by army ants. J Math Biol 33: 459–476

    Article  MathSciNet  MATH  Google Scholar 

  • Watmough J, Edelstein-Keshet L (1995) Modelling the formation of trail networks by foraging ants. J Theor Biol 176: 357–371

    Article  Google Scholar 

  • Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. the organization of mass-foraging. Animal Behav 10: 134–147

    Article  Google Scholar 

  • Witte V, Maschwitz U (2002) Coordination of raiding and emigration in the ponerine army ant Leptogenys distinguenda (Hymenoptera: Formicidae: Ponerinae). J Insect Behav 15: 195–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Motsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boissard, E., Degond, P. & Motsch, S. Trail formation based on directed pheromone deposition. J. Math. Biol. 66, 1267–1301 (2013). https://doi.org/10.1007/s00285-012-0529-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0529-6

Keywords

Mathematics Subject Classification

Navigation