Skip to main content
Log in

The ‘Butterfly effect’ in Cayley graphs with applications to genomics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Suppose a finite set X is repeatedly transformed by a sequence of permutations of a certain type acting on an initial element x to produce a final state y. For example, in genomics applications, X could be a set of genomes and the permutations certain genome ‘rearrangements’ or, in group theory, X could be the set of configurations of a Rubik’s cube and the permutations certain specified moves. We investigate how ‘different’ the resulting state y′ to y can be if a slight change is made to the sequence, either by deleting one permutation, or replacing it with another. Here the ‘difference’ between y and y′ might be measured by the minimum number of permutations of the permitted type required to transform y to y′, or by some other metric. We discuss this first in the general setting of sensitivity to perturbation of walks in Cayley graphs of groups with a specified set of generators. We then investigate some permutation groups and generators arising in computational genomics, and the statistical implications of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon N, Spencer J (1992) The probabilistic method. Wiley, New York

    MATH  Google Scholar 

  • Bafna V, Pevzner PA (1996) Genome rearrangements and sorting by reversals. SIAM J Comput 25(2): 272–289

    Article  MATH  MathSciNet  Google Scholar 

  • Bergeron A, Mixtacki J, Stoye J (2009) A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor Comput Sci 410(51): 5300–5316

    Article  MATH  MathSciNet  Google Scholar 

  • Chen T, Skiena S (1996) Sorting with fixed-length reversals. Discret Appl Math 71: 269–295

    Article  MATH  MathSciNet  Google Scholar 

  • Chin LL, Ying CL, Yen LH, Chuan YT (2007) Analysis of genome rearrangement by block-interchanges. Methods Mol Biol 396: 121–134

    Article  Google Scholar 

  • Daskalakis C, Mossel E, Roch S (2010) Evolutionary trees and the Ising model on the Bethe lattice: a proof of Steel’s conjecture. Probab Theor Relat Fields 149: 149–189

    Article  MathSciNet  Google Scholar 

  • Eppstein DBA (1992) Word processing in groups. A K Peters/CRC Press, New York

    Google Scholar 

  • Erdös PL, Steel MA, Székely LA, Warnow T (1999) A few logs suffice to build (almost) all trees (part 1). Rand Struct Alg 14(2): 153–184

    Article  MATH  Google Scholar 

  • Evans SN, Speed TP (1993) Invariants of some probability models used in phylogenetic inference. Ann Stat 21: 355–377

    Article  MATH  MathSciNet  Google Scholar 

  • Fertin G, Labarre A, Rusu I, Tannier E, Vialette S (2009) Combinatorics of genome rearrangements. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Gronau I, Moran S, Snir S (2008) Fast and reliable reconstruction of phylogenetic trees with very short edges. In: SODA: ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp. 379–388

  • Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations via reversals. J Assoc Comput Mach 46(1): 1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Hilborn RC (2004) Sea gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics. Am J Phys 72(4): 425–427

    Article  Google Scholar 

  • Holmgren R (1994) A first course in discrete dynamical systems, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Kececioglu JD, Sankoff D (1995) Exact and approximate algorithms for sorting by reversals with application to genome rearrangement. Algorithmica 13: 180–210

    Article  MATH  MathSciNet  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78: 454–458

    Article  MATH  Google Scholar 

  • Kostantinova E (2008) Some problems on Cayley graphs. Linear Algebra Appl. 429: 2754–2769

    Article  MathSciNet  Google Scholar 

  • Kunkle D, Cooperman G (2009) Harnessing parallel disks to solve Rubik’s cube. J Symb Comput 44(7): 872–890

    Article  MATH  MathSciNet  Google Scholar 

  • Labarre L (2006) New bounds and tractable instances for the transposition distance. IEEE/ACM Trans Comput Biol Bioinf 3(4): 380–394

    Article  Google Scholar 

  • Mossel E, Steel M (2005) How much can evolved characters tell us about the tree that generated them? In: Gascuel O (ed) Mathematics of evolution and phylogeny. Oxford University Press, Oxford, pp 384–412

  • Pevzner P (2000) Computational molecular biology. MIT Press, Cambridge

    MATH  Google Scholar 

  • Rotman JJ (1995) An introduction to the theory of groups. Springer, New York

    Book  MATH  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4): 406–425

    Google Scholar 

  • Sankoff D, Blanchette M (1997) The median problem for breakpoints in comparative genomics. Computing and Combinatorics, Shanghai, pp 251–263

  • Sankoff D, Blanchette M (1998) Multiple genome rearrangement and breakpoint phylogeny. J Comput Biol 5: 555–570

    Article  Google Scholar 

  • Setubal J, Meidanis M (1997) Introduction to computational molecular biology. PWS Publishing Company, Boston

    Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Sinha A, Meller J (2008) Sensitivity analysis for reversal distance and breakpoint re-use in genome rearrangements. Pac J Biocomput 13: 37–48

    Google Scholar 

  • Steele J.M. (1986) An Efron-Stein inequality for nonsymmetric statistics. Ann Stat 14(2): 753–758

    Article  MATH  MathSciNet  Google Scholar 

  • Trifonov V, Rabadan R (2010) Frequency analysis techniques for identification of viral genetic data. mBio 1(3): e00156-10

    Article  Google Scholar 

  • Wang L-S (2002) Genome rearrangement phylogeny using weighbor. In: Lecture Notes for Computer Sciences No. 2452. Proceedings for the second workshop on algorithms in bioinformatics (WABI’02), Rome, pp 112–125

  • Wang L-S, Warnow T (2005) Distance-based genome rearrangement phylogeny. In: Gascuel O (eds) Mathematics of evolution and phylogeny. Oxford University Press, Oxford, pp 353–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Moulton.

Additional information

VM thanks the Royal Society for supporting his visit to University of Canterbury, where most of this work was undertaken. MS thanks the Royal Society of New Zealand under its James Cook Fellowship scheme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulton, V., Steel, M. The ‘Butterfly effect’ in Cayley graphs with applications to genomics. J. Math. Biol. 65, 1267–1284 (2012). https://doi.org/10.1007/s00285-011-0498-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0498-1

Keywords

Mathematics Subject Classification (2000)

Navigation