Skip to main content

Advertisement

Log in

On the page number of RNA secondary structures with pseudoknots

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Let \({\mathcal {S}}\) denote the set of (possibly noncanonical) base pairs {i, j} of an RNA tertiary structure; i.e. \({\{i, j\} \in \mathcal {S}}\) if there is a hydrogen bond between the ith and jth nucleotide. The page number of \({\mathcal {S}}\), denoted \({\pi(\mathcal {S})}\), is the minimum number k such that \({\mathcal {S}}\) can be decomposed into a disjoint union of k secondary structures. Here, we show that computing the page number is NP-complete; we describe an exact computation of page number, using constraint programming, and determine the page number of a collection of RNA tertiary structures, for which the topological genus is known. We describe an approximation algorithm from which it follows that \({\omega(\mathcal {S}) \leq \pi(\mathcal {S}) \leq \omega(\mathcal {S}) \cdot \log n}\), where the clique number of \({\mathcal {S}, \omega(\mathcal {S})}\), denotes the maximum number of base pairs that pairwise cross each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams JP, van den Berg M, van Batenburg E, Pleij C (1990) Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res 18: 3035–3044

    Article  Google Scholar 

  • Bellaousov S, Mathews DH (2010) Probknot: fast prediction of RNA secondary structure including pseudoknots. RNA 16(10): 1870–1880

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1): 235–242

    Article  Google Scholar 

  • Bon M (2009) Prédiction de structures secondaires d’ARN avec pseudo-noeuds. PhD thesis, Ecole Polytechnique

  • Bon M, Orland H (2011) TT2NE: a novel algorithm to predict RNA secondary structures with pseudoknots. Nucleic Acids Res 39(14): e93

    Article  Google Scholar 

  • Bon M, Vernizzi G, Orland H, Zee A (2008) Topological classification of RNA structures. J Mol Biol 379(4): 900–911

    Article  Google Scholar 

  • Cao S, Chen SJ (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res 34(9): 2634–2652

    Article  Google Scholar 

  • Chen WY, Han HS, Reidys CM (2009) Random K-noncrossing RNA structures. Proc Natl Acad Sci USA 106(52): 22061–22066

    Article  MathSciNet  MATH  Google Scholar 

  • Chung FRK, Leighton FT, Rosenberg AL (1987) Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J Algebraic Discrete Methods 8(1): 33–58

    Article  MathSciNet  MATH  Google Scholar 

  • Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci USA 106(1): 97–102

    Article  Google Scholar 

  • Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24(13): 1664–1677

    Article  Google Scholar 

  • Filotti IS, Miller GL, Reif JH (1979) On determining the genus of a graph in OO(g)) steps. In: STOC. ACM, pp 27–37

  • Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5: 140

    Article  Google Scholar 

  • Garey MR, Johnson DS (1990) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman & Co., New York

    Google Scholar 

  • Garey MR, Johnson DS, Miller GL, Papadimitriou CH (1980) The complexity of coloring circular arcs and chords. SIAM J Algebraic Discrete Methods 1: 216–227

    Article  MathSciNet  MATH  Google Scholar 

  • Golumbic MC (2004) Algorithmic graph theory and perfect graphs. North-Holland

  • Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1): 439–441

    Article  Google Scholar 

  • Gutell R, Lee J, Cannone J (2005) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12: 301–310

    Article  Google Scholar 

  • Harary F (1994) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  • Haslinger C, Stadler PF (1999) Rna structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties. Bull Math Biol 61(3): 437–467

    Article  Google Scholar 

  • Heath LS, Istrail S (1987) The pagenumber of genus g graphs is O(g). In: STOC ’87: proceedings of the 19th annual ACM symposium on theory of computing, New York, NY, USA. ACM, pp 388–397

  • Hofacker I (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13): 3429–3431

    Article  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsch Chem 125: 167–188

    Article  Google Scholar 

  • Huang Z, Wu Y, Robertson J, Feng L, Malmberg RL, Cai L (2008) Fast and accurate search for non-coding RNA pseudoknot structures in genomes. Bioinformatics 24(20): 2281–2287

    Article  Google Scholar 

  • Huang FW, Peng WW, Reidys CM (2009) Folding 3-noncrossing RNA pseudoknot structures. J Comput Biol 16(11): 1549–1575

    Article  MathSciNet  Google Scholar 

  • Jensen TR, Toft B (1995) Graph coloring problems. Wiley, New York

    MATH  Google Scholar 

  • Jin EY, Reidys CM (2010) On the decomposition of k-noncrossing RNA structures. Adv Appl Math 44(1): 53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Karapetyan IA (1980) Coloring of arc graphs. Akad Nauk Armyam SSR Doklady 70: 306–311 (in Russian)

    MathSciNet  MATH  Google Scholar 

  • Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13): 3423–3428

    Article  Google Scholar 

  • Kostochka A, Kratochvil J (1997) Covering and coloring polygon-circle graphs. Discrete Math 163(1): 299–305

    Article  MathSciNet  MATH  Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4): 499–512

    Article  Google Scholar 

  • Lowe T, Eddy S (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5): 955–964

    Google Scholar 

  • Lyngso RB, Pedersen CN (2000) RNA pseudoknot prediction in energy-based models. J Comput Biol 7(3-4): 409–427

    Article  Google Scholar 

  • Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453: 3–31

    Article  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner H (1999) Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol 288: 911–940

    Article  Google Scholar 

  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101: 7287–7292

    Article  Google Scholar 

  • Metzler D, Nebel ME (2008) Predicting RNA secondary structures with pseudoknots by MCMC sampling. J Math Biol 56(1–2): 161–181

    MathSciNet  MATH  Google Scholar 

  • Meyer IM, Miklos I (2007) Simulfold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS Comput Biol 3(8): e149

    Article  MathSciNet  Google Scholar 

  • Micali S, Vazirani VV (1980) An \({O (\sqrt{|V|} |E|)}\) algorithm for finding maximum matching in general graphs. In: 21st Annual symposium on foundations of computer science, pp 17–27

  • Poolsap U, Kato Y, Akutsu T (2009) Prediction of RNA secondary structure with pseudoknots using integer programming. BMC Bioinformatics 10: S38

    Article  Google Scholar 

  • Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5: 104

    Article  Google Scholar 

  • Reidys CM, Huang FW, Andersen JE, Penner RC, Stadler PF, Nebel ME (2011) Topology and prediction of RNA pseudoknots. Bioinformatics 27(8): 1076–1085

    Article  Google Scholar 

  • Ren J, Rastegari B, Condon A, Hoos HH (2005) Hotknots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11(10): 1494–1504

    Article  Google Scholar 

  • Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285: 2053–2068

    Article  Google Scholar 

  • Sato K, Morita K, Sakakibara Y (2008) PSSMTS: position specific scoring matrices on tree structures. J Math Biol 56(1–2): 201–214

    MathSciNet  MATH  Google Scholar 

  • Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27(13): i85–i93

    Article  Google Scholar 

  • Smit S, Rother K, Heringa J, Knight R (2008) From knotted to nested RNA structures: a variety of computational methods for pseudoknot removal. RNA 14(3): 410–416

    Article  Google Scholar 

  • Sussman JL, Holbrook SR, Warrant RW, Church GM, Kim SH (1978) Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol 123(4): 607–630

    Article  Google Scholar 

  • Tabaska JE, Cary RE, Gabow HN, Stormo GD (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14: 691–699

    Article  Google Scholar 

  • Taufer M, Licon A, Araiza R, Mireles D, Van Batenburg FH, Gultyaev AP, Leung MY (2009) Pseudobase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. Nucleic Acids Res 37(Database): D127–D135

    Article  Google Scholar 

  • Theimer CA, Giedroc DP (1999) Equilibrium unfolding pathway of an H-type RNA pseudoknot which promotes programmed-1 ribosomal frameshifting. J Mol Biol 289(5): 1283–1299

    Article  Google Scholar 

  • Thomassen C (1989) The graph genus problem is NP-complete. J Algorithms 10(4): 568–576

    Article  MathSciNet  MATH  Google Scholar 

  • Van Batenburg FH, Gultyaev AP, Pleij CW (2001) Pseudobase: structural information on RNA pseudoknots. Nucleic Acids Res 29(1): 194–195

    Article  Google Scholar 

  • Van Hentenryck P (1989) Constraint satisfaction in logic programming. The MIT Press, Cambridge

    Google Scholar 

  • Vendruscolo M, Kussell E, Domany E (1997) Recovery of protein structure from contact maps. Fold Des 2: 295–306

    Article  Google Scholar 

  • Vernizzi G, Orland H, Zee A (2005) Enumeration of RNA structures by matrix models. Phys Rev Lett 94(16): 168103

    Article  Google Scholar 

  • Vernizzi G, Ribeca P, Orland H, Zee A (2006) Topology of pseudoknotted homopolymers. Phys Rev E 73(3): 031902

    Article  Google Scholar 

  • Wiese KC, Glen E, Vasudevan A (2005) JViz.Rna—a Java tool for RNA secondary structure visualization. IEEE Trans Nanobioscience 4(3): 212–218

    Article  Google Scholar 

  • Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman HM, Westhof E (2003) Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res 31(13): 3450–3560

    Article  Google Scholar 

  • Zhao J, Malmberg RL, Cai L (2008) Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition. J Math Biol 56(1–2): 145–159

    MathSciNet  MATH  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13): 3406–3415

    Article  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9(1): 133–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Clote.

Additional information

P. Clote and I. Dotu: Research supported in part by National Science Foundation NSF grants DMS-1016618 and DMS-0817971, and by Digiteo Foundation; S. Dobrev: Supported in part by VEGA and APVV grants; and E. Kranakis: Research supported in part by NSERC and MITACS grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clote, P., Dobrev, S., Dotu, I. et al. On the page number of RNA secondary structures with pseudoknots. J. Math. Biol. 65, 1337–1357 (2012). https://doi.org/10.1007/s00285-011-0493-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0493-6

Mathematics Subject Classification (2000)

Navigation