Skip to main content
Log in

A mathematical model of the sleep/wake cycle

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a biologically-based mathematical model that accounts for several features of the human sleep/wake cycle. These features include the timing of sleep and wakefulness under normal and sleep-deprived conditions, ultradian rhythms, more frequent switching between sleep and wakefulness due to the loss of orexin and the circadian dependence of several sleep measures. The model demonstrates how these features depend on interactions between a circadian pacemaker and a sleep homeostat and provides a biological basis for the two-process model for sleep regulation. The model is based on previous “flip–flop” conceptual models for sleep/wake and REM/NREM and we explore whether the neuronal components in these flip–flop models, with the inclusion of a sleep-homeostatic process and the circadian pacemaker, are sufficient to account for the features of the sleep/wake cycle listed above. The model is minimal in the sense that, besides the sleep homeostat and constant cortical drives, the model includes only those nuclei described in the flip–flop models. Each of the cell groups is modeled by at most two differential equations for the evolution of the total population activity, and the synaptic connections are consistent with those described in the flip–flop models. A detailed analysis of the model leads to an understanding of the mathematical mechanisms, as well as insights into the biological mechanisms, underlying sleep/wake dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achermann P (2004) The two-process model of sleep regulation revisited. Aviat Space Environ Med 75(3): A37–A43

    Google Scholar 

  • Achermann P, Borbély AA (1990) Simulation of human sleep-ultradian dynamics of electroencephalographic slow-wave activity. J Biol Rhythms 5(2): 141–157

    Article  Google Scholar 

  • Achermann P, Borbély AA (1994) Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol Cybern 71(2): 115–121

    Article  Google Scholar 

  • Achermann P, Borbély AA (2003) Mathematical models of sleep regulation. Front Biosci 8: S683–S693

    Article  Google Scholar 

  • Bes FW, Jobert ML, Muller LC, Schulz H (1996) The diurnal distribution of sleep propensity: experimental data about the interaction of the propensities for slow-wave sleep and rem sleep. J Sleep Res 5: 90–98

    Article  Google Scholar 

  • Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, Benarroch EE, Ahlskog JE, Smith GE, Caselli RC, Tippman-Peikert M, Olson EJ, Lin SC, Young T, Wszolek Z, Schenck CH, Mahowald MW, Castillo PR, Del Tredici K, Braak H (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130: 2770–2788

    Article  Google Scholar 

  • Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16(10): 1959–1973

    Article  Google Scholar 

  • Borbély A (1982) A two process model of sleep regulation. Hum Neurobiol 1: 195–204

    Google Scholar 

  • Borbély A, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14: 557–568

    Google Scholar 

  • Borbély AA, Achermann P (1992) Concepts and models of sleep regulation, an overview. J Sleep Res 1: 63–79

    Article  Google Scholar 

  • Campbell S, Czeisler C, Dijk D, Kronauer R, Brown E, Duffy J, Allan J, Shanahan T, Rimmer D, Ronda J, Mitchell J, Silva E, Emens J (2000) Is there an intrinsic period of the circadian clock?. Science 288: 1174–1175

    Article  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong YM, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4): 437–451

    Article  Google Scholar 

  • Chou T (2003) Regulation of wake-sleep timing: circadian rhythms and bistability of sleep–wake sates. Ph.D. thesis, Harvard University

  • Chou TC, Bjorkum A, Gaus S, Lu J, Scammell T, Saper C (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22: 977–990

    Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33): 10691–10702

    Google Scholar 

  • Colwell CS, Michel S (2003) Sleep and circadian rhythms: do sleep centers talk back to the clock?. Nat Neurosci 6(10): 1005–1006

    Article  Google Scholar 

  • Czeisler C, Duffy J, Shanahan T, Brown E, Mitchell J, Rimmer D, Ronda J, Silva E, Allan J, Emens J, Dijk D, Kronauer R (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284: 2177–2181

    Article  Google Scholar 

  • Daan S, Beersma DGM, Borbely AA (1984) Timing of human sleep—recovery process gated by a circadian pacemaker. Am J Phys 246(2): R161–R178

    Google Scholar 

  • Dauvilliers Y, Amulf I, Mignot E (2007) Narcolepsy with cataplexy. Lancet 369(9560): 499–511

    Article  Google Scholar 

  • Deurveilher S, Semba K (2006) Immediate early genes in sensory processing, cognitive performance and neurological disorders, chap. Mapping Sleep–wake control with the transcription factor c-Fos, pp 113–136. Springer, USA

  • Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian-rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166(1): 63–68

    Article  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5): 3526–3538

    Google Scholar 

  • Diniz Behn CG, Brown EN, Scammell TE, Kopell NJ (2007) Mathematical model of network dynamics governing mouse sleep–wake behavior. J Neurophysiol 97(6): 3828–3840

    Article  Google Scholar 

  • Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE (2008) Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 99(6): 3090–3103

    Article  Google Scholar 

  • von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71: 249–259

    Article  Google Scholar 

  • Ferrillo F, Donadio S, De Carli F, Garbarino S (2007) A model-based approach to homeostatic and ultradian aspects of nocturnal sleep structure in narcolepsy. Sleep 30(2): 157–165

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1: 445–466

    Article  Google Scholar 

  • Fuller PM, Saper CB, Lu J (2007) The pontine REM switch: past and present. J Phys Lond 584(3): 735–741

    Article  Google Scholar 

  • Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thelamocortical system. J Neurophysiol 93(3): 1671–1698

    Article  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    Google Scholar 

  • Jewett ME, Kronauer RE (1999) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J Biol Rhythm 14(6): 588–597

    Article  Google Scholar 

  • John J, Wu M, Boehmer L, Siegel J (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42(4): 619–634

    Article  Google Scholar 

  • Kleitman N (1987) Sleep and wakefulness. University of Chicago Press, Chicago

    Google Scholar 

  • Krahn LE, Black JL, Silber MH (2001) Narcolepsy: new understanding of irresistible sleep. Mayo Clin Proc 76(2): 185–194

    Article  Google Scholar 

  • Krueger JM, Obal F (1993) A neuronal group-theory of sleep function. J Sleep Res 2(3): 186–186

    Google Scholar 

  • Lavie P (1986) Ultrashort sleep-waking schedule. III. ‘gates’ and ‘forbidden zones’ for sleep. Elect Clin Neuro 63: 414–425

    Article  Google Scholar 

  • Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11): 4568–4576

    Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip–flop switch for control of rem sleep. Nature 441(7093): 589–594

    Article  Google Scholar 

  • Massaquoi S, McCarley R (1992) Extension of the limit cycle reciprocal interaction model of REM cycle control. an integrated sleep control model. J Sleep Res 1: 138–143

    Article  Google Scholar 

  • McCarley R, Massaquoi S (1992) Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J Sleep Res 1: 132–137

    Article  Google Scholar 

  • McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8(4): 302–330

    Article  Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over sleep cycle—structural and mathematical-model. Science 189(4196): 58–60

    Article  Google Scholar 

  • McCarley RW, Massaquoi SG (1986) A limit-cycle mathematical-model of the rem-sleep oscillator system. Am J Physiol 251(6): R1011–R1029

    Google Scholar 

  • McGinty D, Szymusiak R (2003) Hypothalamic regulation of sleep and arousal. Front Biosci 8: S1074–S1083

    Article  Google Scholar 

  • Merica H, Fortune RD (2004) State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Med Rev 8(6): 473–485

    Article  Google Scholar 

  • Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24(28): 6291–6300

    Article  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35: 193–213

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50: 2061–2070

    Article  Google Scholar 

  • Nobili L, Beelke M, Besset A, Billiard M, Ferrillo F (2001) Nocturnal sleep features in narcolepsy: a model-based approach. Rev Neurol 157(11): S82–S86

    Google Scholar 

  • Phillips A, Robinson P (2008) Sleep deprivation in a quantitative physiologically based model of the ascending arousal system. J Theor Biol 255(4): 413–423

    Article  Google Scholar 

  • Phillips AJK, Robinson PA (2007) A quantitative model of sleep–wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22(2): 167–179

    Article  Google Scholar 

  • Plazzi G, Serra L, Ferri R (2008) Nocturnal aspects of narcolepsy with cataplexy. Sleep Med Rev 12: 109–128

    Article  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316): 1265–1268

    Article  Google Scholar 

  • Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009) Multiple rhythmic states in a model of the respiratory central pattern generator. J Neurophysiol 101(4): 2146–2165

    Article  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8(3): 171–181

    Article  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12): 726–731

    Article  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063): 1257–1263

    Article  Google Scholar 

  • Sasaki Y, Fukuda K, Takeuchi T, Inugami M, Miyasita A (2000) Sleep onset REM period appearance rate is affected by REM propensity in circadian rhythm in normal nocturnal sleep. Clin Neurophysiol 111(3): 428–433

    Article  Google Scholar 

  • Siegel JM (2006) The stuff dreams are made of: anatomical substrates of rem sleep. Nat Neurosci 9(6): 721–722

    Article  Google Scholar 

  • Siegel JM (2008) Do all animals sleep?. Trends Neurosci 31(4): 208–213

    Article  Google Scholar 

  • Strogatz S (1986) The mathematical structure of the human sleep–wake cycle. Springer, Heidelberg

    MATH  Google Scholar 

  • Strogatz SH (1987) Human sleep and circadian-rhythms—a simple-model based on 2 coupled oscillators. J Math Biol 25(3): 327–347

    Article  MATH  MathSciNet  Google Scholar 

  • Swick TJ (2005) The neurology of sleep. Neurol Clin 23(4): 967–989

    Article  Google Scholar 

  • Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8(4): 291–301

    Article  Google Scholar 

  • Takeuchi T, Ogilvie R, Murphy T, Ferrelli A (2003) EEG activities during elicited sleep onset REM and NREM periods reflect different mechanisms of dream generation. Clin Neurophysiol 114: 210–220

    Article  Google Scholar 

  • Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M (2006) A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 95(4): 2055–2069

    Article  Google Scholar 

  • Wright K, Hughes R, Kronauer R, Dijk D, Czeisler C (2001) Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci 98: 14027–14032

    Article  Google Scholar 

  • Wu M, Gulyani S, Yau E, Mignot E, Phan B, Siegel J (1999) Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 91(4): 1389–1399

    Article  Google Scholar 

  • Wu M, John J, Boehmer L, Yau D, Nguyen G, Siegel J (2004) Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J Physiol 554(1): 202–215

    Article  Google Scholar 

  • Yin W (2007) A mathematical model of the sleep–wake cycle. Master’s thesis, Georgia Institute of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rempe.

Additional information

This work was partially funded by the NSF under agreement 0112050 and by the AFOSR grant FA9550-06-1-0033 to D. Terman and J. Best.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempe, M.J., Best, J. & Terman, D. A mathematical model of the sleep/wake cycle. J. Math. Biol. 60, 615–644 (2010). https://doi.org/10.1007/s00285-009-0276-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0276-5

Keywords

Mathematics Subject Classification (2000)

Navigation