Skip to main content
Log in

Continuum model of cell adhesion and migration

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The motility of cells crawling on a substratum has its origin in a thin cell organ called lamella. We present a 2-dimensional continuum model for the lamella dynamics of a slowly migrating cell, such as a human keratinocyte. The central components of the model are the dynamics of a viscous cytoskeleton capable to produce contractile and swelling stresses, and the formation of adhesive bonds in the plasma cell membrane between the lamella cytoskeleton and adhesion sites at the substratum. We will demonstrate that a simple mechanistic model, neglecting the complicated signaling pathways and regulation processes of a living cell, is able to capture the most prominent aspects of the lamella dynamics, such as quasi-periodic protrusions and retractions of the moving tip, retrograde flow of the cytoskeleton and the related accumulation of focal adhesion complexes in the leading edge of a migrating cell. The developed modeling framework consists of a nonlinearly coupled system of hyperbolic, parabolic and ordinary differential equations for the various molecular concentrations, two elliptic equations for cytoskeleton velocity and hydrodynamic pressure in a highly viscous two-phase flow, with appropriate boundary conditions including equalities and inequalities at the moving boundary. In order to analyse this hybrid continuum model by numerical simulations for different biophysical scenarios, we use suitable finite element and finite volume schemes on a fixed triangulation in combination with an adaptive level set method describing the free boundary dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., Sethian J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alt W.: Biomechanics of actomyosin-dependent mobility of keratinocytes. Biophysics 41(1), 181 (1996)

    MathSciNet  Google Scholar 

  3. Alt W., Dembo M.: Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–228 (1999)

    Article  MATH  Google Scholar 

  4. Alt W., Tranquillo R.T.: Protrusion-retraction dynamics of an annular lamellipodial seam. In: Alt, W. et al. (eds) Dynamics of Cell and Tissue Motion, pp. 73–81. Birkhäuser, Basel (1997)

    Google Scholar 

  5. Balaban N., Schwarz U., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L., Geiger B.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001)

    Article  Google Scholar 

  6. Beningo K., Dembo M., Kaverina I., Small J., Wang Y.: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153(4), 881–888 (2001)

    Article  Google Scholar 

  7. Bertolazzi E., Manzini G.: A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes. Math. Models Methods Appl. Sci 14(8), 1235–1260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borm B., Requardt R., Herzog V., Kirfel G.: Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp. Cell Res. 302(1), 83–95 (2005)

    Article  Google Scholar 

  9. Bottino D., Mogilner A., Roberts T., Stewart M., Oster G.: How nematode sperm crawl. J. Cell Sci. 115(2), 367–384 (2002)

    Google Scholar 

  10. Brenner S., Scott L.: The Mathematical Theory of Finite Element Methods. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Bretschneider T., Diez S., Anderson K., Heuser J., Clarke M., Müller-Taubenberger A., Köhler J., Gerisch G.: Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr. Biol. 14(1), 1–10 (2004)

    Article  Google Scholar 

  12. Bruinsma R.: Theory of force regulation by nascent adhesion sites. Biophys. J. 89(1), 87–94 (2005)

    Article  Google Scholar 

  13. Burridge K., Chrzanowska-Wodnicka M., Zhong C.: Focal adhesion assembly. Trends Cell Biol. 7(9), 342–347 (1997)

    Article  Google Scholar 

  14. Chung C., Funamoto S., Firtel R.: Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26(9), 557–566 (2001)

    Article  Google Scholar 

  15. Dembo M.: Mechanics and control of the cytoskeleton in Amoeba proteus. Biophys. J. 55(6), 1053–1080 (1989)

    Article  MathSciNet  Google Scholar 

  16. Frank D., Carter W.: Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J. Cell Sci. 117(8), 1351–1363 (2004)

    Article  Google Scholar 

  17. Gracheva M., Othmer H.: A continuum model of motility in ameboid cells. Bull. Math. Biol. 66(1), 167–193 (2004)

    Article  MathSciNet  Google Scholar 

  18. He X., Dembo M.: On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell Res. 233(2), 252–273 (1997)

    Article  Google Scholar 

  19. Herant M., Marganski W., Dembo M.: The mechanics of neutrophils: synthetic modeling of three experiments. Biophys. J. 84(5), 3389–3413 (2003)

    Article  Google Scholar 

  20. Hinz B., Alt W., Johnen C., Herzog V., Kaiser H.: Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp. Cell Res. 251, 234–243 (1999)

    Article  Google Scholar 

  21. Hood P., Taylor C.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hou L., Ravindran S.: A penalized neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 36(5), 1795–1814 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiang G., Giannone G., Critchley D., Fukumoto E.: Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003)

    Article  Google Scholar 

  24. Jiang G., Peng D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (1999)

    Article  MathSciNet  Google Scholar 

  25. Landau L., Lifshitz E.: Fluid Mechanics, 2nd edn. Butterworth Heinemann, London (1999)

    Google Scholar 

  26. Lauffenburger D., Horwitz A.: Cell migration: a physically integrated molecular process. Cell 84(3), 359–69 (1996)

    Article  Google Scholar 

  27. Lo C., Wang H., Dembo M., Wang Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1), 144–152 (2000)

    Article  Google Scholar 

  28. Machacek M., Danuser G.: Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90(4), 1439–1452 (2006)

    Article  Google Scholar 

  29. Mitchison T., Cramer L.: Actin-based cell motility and cell locomotion. Cell 84(3), 371–9 (1996)

    Article  Google Scholar 

  30. Mittal R., Iaccarino G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  31. Mogilner A., Edelstein-Keshet L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83(3), 1237–1258 (2002)

    Article  Google Scholar 

  32. Mogilner A., Oster G.: Cell motility driven by actin polymerization. Biophys. J. 71(6), 3030–3045 (1996)

    Article  Google Scholar 

  33. Mogilner A., Oster G.: Polymer motors: pushing out the front and pulling up the back. Current Biol. 13(18), 721–733 (2003)

    Article  Google Scholar 

  34. Mogilner A., Verzi D.: A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys. 110(3), 1169–1189 (2003)

    Article  MATH  Google Scholar 

  35. Möhl, C.: Modellierung von Adhäsions- und Cytoskelett-Dynamik in Lamellipodien migratorischer Zellen. Diploma thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2005)

  36. Oliver J., King J., McKinlay K., Brown P., Grant D., Scotchford C., Wood J.: Thin-film theories for two-phase reactive flow models of active cell motion. Math. Med. Biol. 22(1), 53 (2005)

    Article  MATH  Google Scholar 

  37. Osher S., Shu C.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Palecek S.P., Horwitz A.F., Lauffenburger D.A.: Kinetic model for integrin-mediated adhesion release during cell migration. Ann. Biomed. Eng. 27(2), 219–235 (1999)

    Article  Google Scholar 

  39. Parent C.: A cell’s sense of direction. Science 284(5415), 765–770 (1999)

    Article  Google Scholar 

  40. Parsons J.: Focal adhesion kinase: the first ten years. J. Cell Sci. 116, 1409–1416 (2003)

    Article  Google Scholar 

  41. Plow E., Haas T., Zhang L., Loftus J., Smith J.: Ligand binding to integrins. J. Biol. Chem. 275(29), 21785–21788 (2000)

    Article  Google Scholar 

  42. Pollard T., Borisy G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)

    Article  Google Scholar 

  43. Ponti A., Machacek M., Gupton S., Waterman-Storer C., Danuser G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305(5691), 1782–6 (2004)

    Article  Google Scholar 

  44. Rubinstein B., Jacobson K., Mogilner A.: Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Simul. 3, 413 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Seifert U.: Rupture of multiple parallel molecular bonds under dynamic loading. Phys. Rev. Lett. 84(12), 2750–2753 (2000)

    Article  Google Scholar 

  46. Sethian J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–5 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sethian J.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  48. Small J., Herzog M., Anderson K.: Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 129(5), 1275–1286 (1995)

    Article  Google Scholar 

  49. Small J., Stradal T., Vignal E., Rottner K.: The lamellipodium: where motility begins. Trends Cell Biol. 12(3), 112–120 (2002)

    Article  Google Scholar 

  50. Thoumine O., Meister J.J.: A probabilistic model for ligand–cytoskeleton transmembrane adhesion: predicting the behavior of microspheres on the surface of migrating cells. J. Theor. Biol. 204(3), 381–392 (2000)

    Article  Google Scholar 

  51. Turner C.: Paxillin and focal adhesion signalling. Nature Cell Biol. 2, E231–E236 (2000)

    Article  Google Scholar 

  52. Verkhovsky A., Svitkina T., Borisy G.: Self-polarization and directional motility of cytoplasm. Curr. Biol. 9(1), 11–20 (1999)

    Article  Google Scholar 

  53. Xian W., Tang J., Janmey P., Braunlin W.: The polyelectrolyte behavior of actin filaments: a 25Mg NMR study. Biochemistry 38(22), 7219–7226 (1999)

    Article  Google Scholar 

  54. Ye T., Mittal R., Udaykumar H., Shyy W.: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156(2), 209–240 (1999)

    Article  MATH  Google Scholar 

  55. Zhu C., Skalak R.: A continuum model of protrusion of pseudopod in leukocytes. Biophys. J. 54(6), 1115–1137 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Kuusela.

Electronic Supplementary Material

The Below are the Electronic Supplementary Materials.

285_2008_179_MOESM1_ESM.mpg

Movie 1 (related to Fig. 6 of the article): F-actin pattern formation. F-actin pattern formation starting from a constant concentration in a stationary domain. Coloring indicates the volume fraction of F-actin (red: high F-actin concentration, blue: low). Arrows represent the velocity of the F-actin field. ESM 1 (MPG 43,588 kb)

285_2008_179_MOESM2_ESM.mpg

Movie 2 (related to Fig. 7 of the article): Polarization. Polarization of an initially symmetric cell fragment. Coloring indicates the density of actin-and-surface bound integrins (red: high integrin density, blue: low). Arrows represent the velocity of the F-actin field. ESM 2 (MPG 21,385 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuusela, E., Alt, W. Continuum model of cell adhesion and migration. J. Math. Biol. 58, 135–161 (2009). https://doi.org/10.1007/s00285-008-0179-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0179-x

Keywords

Mathematics Subject Classification (2000)

Navigation