Skip to main content
Log in

Engineering Plasmid-Free Klebsiella Pneumoniae for Production of 3-Hydroxypropionic Acid

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Although plasmid-dependent microbial breeding is predominant in manufacturing bio-based chemicals, it shows pitfall of genetic instability and thus hinders industrial production. Alternatively, chromosome engineering free from plasmid enables genetic stability and thus represents the new trend of microbial breeding. 3-Hydroxypropionic acid (3-HP) is an economically important platform compound as the versatile precursor of a suite of C3 compound, such as 1, 3-PDO. Klebsiella pneumoniae is regarded as a promising host strain due to both its dha regulon and exceptional glycerol fermentation ability. To produce 3-HP in K. pneumoniae, the IS1 region in chromosome was replaced with the AD DNA cassette containing aldH gene from E.coli through homologous recombination approach. The engineered recombinant converted glycerol into 3-HPA and then 3-HP when 40 g/L of initial glycerol was added. The novelties of this study comprise (i) the genetic stability of plasmid-free strains (ii) without using any inducer and antibiotics and thus more applicable than plasmid-based strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashok S, Raj SM, Rathnasingh C, Park S (2011) Development of recombinant Klebsiella pneumoniaeΔ dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 90(4):1253–1265

    Article  CAS  PubMed  Google Scholar 

  2. Borodina I, Kildegaard KR, Jensen NB (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64

    Article  CAS  PubMed  Google Scholar 

  3. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149(2):413–419

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Forage RG, Lin EC (1982) Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumonia NCIB 418. J Bacteriol 151(2):591–599

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Friehs K (2014) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82

    Google Scholar 

  6. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  7. Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31(6):945–961

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Ge X, Tian PF (2013) Gene arrangements in expression vector affect 3-hydroxypropionic acid production in Klebsiella pneumoniae. Indian J Microbiol. 53(4):418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Tian PF (2015) Contemplating 3-hydroxypropionic acid biosynthesis in Klebsiella pneumoniae. Indian J Microbiol. 55(2):131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramakrishnan GG, Nehru G, Suppuram P, Balasubramaniyam S, Gulab BR, Subramanian R (2015) Bio-transformation of glycerol to 3-hydroxypropionic acid using resting cells of Lactobacillus reuteri. Curr Microbiol 71(4):517–523

    Article  PubMed  Google Scholar 

  11. Stephanopoulos G, Jaggard KE (2011) Genetically stabilized tandem gene duplication. US patent 20110236927

  12. Su M, Li Y, Ge X, Tian PF (2015) 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotecnol Lett. 37(3):717–724

    Article  CAS  Google Scholar 

  13. Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27(8):760–765

    Article  CAS  PubMed  Google Scholar 

  14. Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ (2013) Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97(8):3309–3321

    Article  CAS  PubMed  Google Scholar 

  15. Werpy T, Petersen G (2004) Top value added chemicals from biomass. U.S.DOE, Washington

    Google Scholar 

  16. Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng 110(12):3177–3187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 21276014, 21476011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Tian, P. Engineering Plasmid-Free Klebsiella Pneumoniae for Production of 3-Hydroxypropionic Acid. Curr Microbiol 74, 55–58 (2017). https://doi.org/10.1007/s00284-016-1153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1153-2

Keywords

Navigation