Skip to main content

Advertisement

Log in

Bacterial and Archaeal Diversities in Maotai Section of the Chishui River, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Chishui River is the last undammed tributary of the upper Yangtze River, extends cross Sichuan, Yunnan and Guizhou provinces, and it is the significant water source of Maotai liquor, Southwest of China. We investigated microbial community of the Chishui River in the Maotai town section, because of deep relationship between the water and the most famous Chinese liquor, Maotai liquor. In this study, diversities of bacteria and archaea of four seasons were analyzed in two different sampling sites using a barcoded 16S rRNA gene-pyrosequencing approach. The results show that the predominant community among all bacteria is Proteobacteria (70.16–94.29 %), of which Gamma-proteobacteria made up the largest portion. Bacterial community structure in spring and autumn tended to group together, and the operational taxonomic units of bacteria peaked in summer. The quantitative PCR (q-PCR) results revealed significantly higher number of gene copies in the downstream than that in the upstream, and were slightly higher in summer and spring than other seasons. Archaeal community structures had no obvious regular pattern, and species richness was higher in downstream in all seasons. Euryarchaeota and Thaumarchaeota were the dominant groups in archaeal populations, and abundant ammonia-oxidizing archaea was detected. The study significantly improved our understanding of microbial community in Maotai section of the Chishui River, where the unique and world-famous Maotai liquor is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves RJ, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T (2013) Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J 7:1620–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bizic-Ionescu M, Zeder M, Ionescu D, Orlic S, Fuchs BM, Grossart HP, Amann R (2015) Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ Microbiol 17:3500–3514

    Article  CAS  PubMed  Google Scholar 

  3. Böckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170

    Article  Google Scholar 

  4. Brablcova L, Buriankova I, Badurova P, Chaudhary PP, Rulik M (2015) Methanogenic archaea diversity in hyporheic sediments of a small lowland stream. Anaerobe 32:24–31

    Article  CAS  PubMed  Google Scholar 

  5. Buriankova I, Brablcova L, Mach V, Hyblova A, Badurova P, Cupalova J et al (2012) Methanogens and methanotrophs distribution in the hyporheic sediments of a small lowland stream. Fundam Appl Limnol 181:87–102

    Article  CAS  Google Scholar 

  6. Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT (2007) Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J 1:660–662

    Article  PubMed  Google Scholar 

  7. Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Wang LY, Liu SJ, Hu JY, He Y, Zhou HW, Zhang XH (2013) Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing. Int Biodeterior Biodegrad 85:429–437

    Article  CAS  Google Scholar 

  9. Crump BC, Hobbie JE (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729

    Article  CAS  Google Scholar 

  10. Feng Q, Gao Y, Nogi Y, Tan X, Han L, Zhang Y, Lv J (2015) Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 65:171–176

    Article  CAS  PubMed  Google Scholar 

  11. Feng Q, Han L, Yuan X, Tan X, Gao Y, Lv J (2015) Flavobacterium procerum sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 65:2702–2708

    Article  CAS  PubMed  Google Scholar 

  12. Feng XM, Tan X, Jia L, Long PP, Han L, Lv J (2015) Flavobacterium buctense sp. nov., isolated from freshwater. Arch Microbiol 197:1109–1115

    Article  CAS  PubMed  Google Scholar 

  13. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganzert L, Jurgens G, Munster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488

    Article  CAS  PubMed  Google Scholar 

  15. Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308

    Article  Google Scholar 

  16. Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact 14:1–11

    Article  Google Scholar 

  17. Hahn MW, Kasalicky V, Jezbera J, Brandt U, Jezberova J, Simek K (2010) Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365

    Article  CAS  PubMed  Google Scholar 

  18. Hahn MW, Kasalicky V, Jezbera J, Brandt U, Simek K (2010) Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hou J, Song C, Cao X, Zhou Y (2013) Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res 47:2285–2296

    Article  CAS  PubMed  Google Scholar 

  20. Hullar MA, Kaplan LA, Stahl DA (2006) Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 72:713–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jordaan K, Bezuidenhout CC (2015) Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality. Environ Sci Pollut Res 23:5868–5880

    Article  Google Scholar 

  22. Kasalicky V, Jezbera J, Simek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  24. Methe BA, Hiorns WD, Zehr JP (1998) Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol Oceanogr 43:368–374

    Article  CAS  Google Scholar 

  25. Qiu L, Zhai HJ (2014) An ecological compensation mechanism of Chishui River water resources protection and research. Appl Mech Mater 685:463–467

    Article  Google Scholar 

  26. Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing Bacteria and Archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079

    Article  CAS  PubMed  Google Scholar 

  27. Schultz GE Jr, Kovatch JJ, Anneken EM (2013) Bacterial diversity in a large, temperate, heavily modified river, as determined by pyrosequencing. Aquat Microb Ecol 70:169–179

    Article  Google Scholar 

  28. Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Staley C, Gould TJ, Wang P, Jane Phillips, Cotner JB, Sadowsky MJ (2015) Species sorting and seasonal dynamics primarily shape bacterial communities in the upper Mississippi River. Sci Total Environ 505:435–445

    Article  CAS  PubMed  Google Scholar 

  30. Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the upper Mississippi River. J Appl Microbiol 115:1147–1158

    Article  CAS  PubMed  Google Scholar 

  31. Stieglmeier M, Klingl A, Alves RJ, Rittmann SK, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64:2738–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Xiao X, Tang SK, Jiang HC, Zhang CL, Dong H, Li WJ (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 15:1160–1175

    Article  CAS  PubMed  Google Scholar 

  33. Tan X, Zhang RG, Meng TY, Liang HZ, Lv J (2014) Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64:1795–1801

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Liu F, Zhang X, Cao WX, Liu HZ, Gao X (2014) Reproductive biology of Chinese minnow Hemiculterella sauvagei Warpachowski, 1888 in the Chishui River, China. J Appl Ichthyol 30:314–321

    Article  Google Scholar 

  35. Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49:4122–4128

    Article  CAS  PubMed  Google Scholar 

  36. Yuan X, Nogi Y, Tan X, Zhang RG, Lv J (2014) Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 64:3994–4000

    Article  PubMed  Google Scholar 

  37. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  PubMed  Google Scholar 

  38. Zhang RG, Tan X, Liang Y, Meng TY, Liang HZ, Lv J (2014) Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 64:2723–2728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank L. Q. Liang and Z. K. Zhang for their help with sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lv.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 94515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Han, L., Tan, X. et al. Bacterial and Archaeal Diversities in Maotai Section of the Chishui River, China. Curr Microbiol 73, 924–929 (2016). https://doi.org/10.1007/s00284-016-1142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1142-5

Keywords

Navigation