Skip to main content
Log in

Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell’s CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers’ insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) Crispr provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  2. Bhaya D, Davison M, Barrangou R (2011) Crispr-cas systems in bacteria and archaea: versatile small rnas for adaptive defense and regulation. Ann Rev Genet 45(45):273–297

    Article  CAS  PubMed  Google Scholar 

  3. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (crisprs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  4. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small crispr rnas guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  Google Scholar 

  5. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to crispr-encoded resistance in streptococcus thermophilus. J Bacteriol 190(4):1390–1400

    Article  CAS  PubMed  Google Scholar 

  6. Deveau H, Garneau JE, Moineau S (2010) Crispr/cas system and its role in phage-bacteria interactions. Ann Rev Microbiol 64:475–493

    Article  CAS  Google Scholar 

  7. Duplessis M, Moineau S (2001) Identification of a genetic determinant responsible for host specificity in streptococcus thermophilus bacteriophages. Mol Microbiol 41(2):325–336

    Article  CAS  PubMed  Google Scholar 

  8. Fox PF, Mcsweeney PL, Cogan TM, Guinee TP (2004) Cheese: chemistry, physics and microbiology: general aspects, 1st edn. Academic Press, Cambridge

    Google Scholar 

  9. Garneau JE, Marie-ève D, Manuela V, Romero DA, Rodolphe B, Patrick B, Christophe F, Philippe H, Magadán AH, Sylvain M (2010) The crispr/cas bacterial immune system cleaves bacteriophage and plasmid dna. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  10. Grissa I, Vergnaud G, Pourcel C (2007) Crisprfinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(suppl 2):W52–W57

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of rna secondary structures. Monatshefte Für Chemie 125(2):167–188

    Article  CAS  Google Scholar 

  12. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD (2005) New insights in the molecular biology and physiology of streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29(3):435–463

    CAS  PubMed  Google Scholar 

  13. Horvath P, Romero DA, Coûté-Monvoisin A, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of crispr loci in streptococcus thermophilus. J Bacteriol 190(4):1401–1412

    Article  CAS  PubMed  Google Scholar 

  14. Jansen R, Embden J, Gaastra W, Schouls L (2002) Identification of genes that are associated with dna repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  15. Joe BD, April P, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the crispr/cas bacterial immune system. Nature 493(7432):429–432

    Google Scholar 

  16. Karginov FV, Hannon GJ (2010) The crispr system: small rna-guided defense in bacteria and archaea. Mol Cell 37(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in crispr repeats. Genome Biol 8(4):61

    Article  Google Scholar 

  18. Magadán AH, Dupuis MÈ, Villion M, Moineau S (2012) Cleavage of phage dna by the streptococcus thermophilus crispr3-cas system. Plos One 7(7):e40913

    Article  PubMed  PubMed Central  Google Scholar 

  19. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative rna-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic rnai, and hypothetical mechanisms of action. Biol Direct 1(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marraffini LA, Sontheimer EJ (2008) Crispr interference limits horizontal gene transfer in staphylococci by targeting dna. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marraffini LA, Sontheimer EJ (2010) Crispr interference: rna-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mojica FJM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 36(1):244–246

    Article  CAS  PubMed  Google Scholar 

  23. Mojica FJ, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  PubMed  Google Scholar 

  24. Mojica F, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic crispr defence system. Microbiology 155(3):733–740

    Article  CAS  PubMed  Google Scholar 

  25. Rasic JL, Kurmann JA (1978) Yoghurt Scientific grounds, technology, manufacture and preparations. Yoghurt. Scientific grounds, technology, manufacture and preparations. 466

  26. Seed KD, Lazinski DW, Calderwood SB, Andrew C (2013) A bacteriophage encodes its own crispr/cas adaptive response to evade host innate immunity. Nature 494(7438):489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs mixed identities and functional diversity. Rna Biol 10(5):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamura K (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and macimum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Li J, Zhao H, Sheng G, Wang M, Yin M, Wang Y (2015) Structural and mechanistic basis of pam-dependent spacer acquisition in crispr-cas systems. Cell 163(4):840–853

    Article  CAS  PubMed  Google Scholar 

  30. Wiedenheft B, Sternberg SH, Doudna JA (2012) Rna-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Number: 31171717) and the Special Program for Public Welfare Industry of the Ministry of Agriculture, China (Grant Number: 201203009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-cheng Huo.

Ethics declarations

Conflict of Interest

The authors hereby declare that there was no conflict of interest in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Bian, X., Evivie, S.E. et al. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives. Curr Microbiol 73, 393–400 (2016). https://doi.org/10.1007/s00284-016-1076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1076-y

Keywords

Navigation