Skip to main content
Log in

Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Christos Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65(1):14–23

    Article  Google Scholar 

  2. Almeida FB, Cerqueira FM, Silva Rdo N, Ulhoa CJ, Lima AL (2007) Mycoparatism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29(8):1189–1193

    Article  CAS  PubMed  Google Scholar 

  3. Atanasova L, LeCrom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom 14(1):121

    Article  CAS  Google Scholar 

  4. Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pe E, Vannacci G (2015) Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome A 3(3):9–10

    Google Scholar 

  5. Benitez T, Rincon-Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  6. Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28(4):97–125

    Article  Google Scholar 

  7. Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19(8):838–853

    Article  CAS  PubMed  Google Scholar 

  8. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dou K, Wang Z, Zhang R, Wang N, Fan H, Diao G, Liu Z (2014) Cloning and characteristic analysis of a novel aspartic protease gene Asp55 from Trichoderma asperellum ACCC30536. Microbiol Res 169(12):915–923

    Article  CAS  PubMed  Google Scholar 

  10. Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  12. Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  13. Fan H, Liu Z, Zhang R, Wang N, Dou K, Mijiti G, Diao G, Wang Z (2014) Functional analysis of a subtilisin-like serine protease gene from biocontrol fungus Trichoderma harzianum. J Microbiol 52(2):129–138

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Yang Q (2013) Cloning and heterologous expression of serine protease SL41 related to biocontrol in Trichoderma harzianum. J Mol Microbiol Biotechnol 23(6):431–439

    Article  CAS  PubMed  Google Scholar 

  15. Mde Sain M, Rep M (2015) The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci 16(10):23970–23993

    Article  Google Scholar 

  16. Myers DF, Fry WE (1978) Hydrogen cyanide potential during pathogenesis of sorghum by Gloeocercospora sorghi or Helminthosporium sorghicola. Phytopathology 68:1037–1041

    Article  CAS  Google Scholar 

  17. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77(13):4361–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salwan R, Kasana RC (2013) Purification and characterization of an extracellular low temperature-active and alkaline stable peptidase from psychrotrophic Acinetobacter sp. MN12 MTCC (10786). Indian. J Microbiol 53(1):63–69

    CAS  Google Scholar 

  19. Samolski I, de Luis A, Vizcaíno JA, Monte E, Suarez MB (2009) Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol 9:217

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52(3):324–333

    Article  CAS  PubMed  Google Scholar 

  21. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava M, Shahid M, Pandey S, Singh A, Kumar V, Gupta S, Maurya M (2014) Trichoderma genome to genimics: a review. J Data Min Genom Proteom 5(3):162

    Google Scholar 

  23. Steindorff AS, Noronha EF, Ulhoa CJ, Kuo A, Salamov AA, Haridas S, Riley RW, Druzhinina IS, Kubicek CP, Grigoriev I (2015) Genome sequencing and comparative analysis of the biocontrol agent Trichoderma harzianum sensu stricto TR274. Report number: LBNL-178254 poster presentation

  24. Than PP, Prihastuti H, Phoulivong S, Taylor PWJ, Hyde KD (2008) Chilli anthracnose disease caused by Colletotrichum species. J Zhejiang Univ Sci B 9(10):764–778

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva Rdo N, Ulhoa CJ (2013) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genom 14(1):177

    Article  CAS  Google Scholar 

  26. Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  PubMed  Google Scholar 

  27. Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29(11):2087–2094

    Article  CAS  PubMed  Google Scholar 

  28. Yao L, Yang Q, Song J, Tan C, Guo C, Wang L, Qu L, Wang Y (2013) Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. J Microbiol 51(2):174–182

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS (2015) The neutral metallopeptidase NMP1 of Trichoderma guizhouense is required for mycotrophy and self-defence. Environ Microbiol. doi:10.1111/1462-2920.12966

    PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is thankful to the Department of Science and Technology, New Delhi for providing funds under DST-FAST Track young scientist scheme (Award Letter No. SB/FT/LS-365/2012). The corresponding author also acknowledges the Department of Plant Pathology, CSK-HPKV, for providing four phytopathogenic fungi used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Sharma.

Ethics declarations

Conflict of interests

The authors declared no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Salwan, R. & Sharma, P.N. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens. Curr Microbiol 73, 419–425 (2016). https://doi.org/10.1007/s00284-016-1072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1072-2

Keywords

Navigation