Skip to main content

Advertisement

Log in

Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chlorine is deployed worldwide to clean waters and prevent water-originated illnesses. However, chlorine has a limited disinfection capacity against biofilms. Microorganisms form biofilms to protect themselves from biological threats such as disinfectant chemicals. Pseudomonas aeruginosa is an opportunistic pathogen and its biofilm form attaches to surfaces, living buried into exopolysaccharides, can be present in all watery environments including tap water and drinking water. This research aimed to study the biofilm trigger mechanism of the opportunistic pathogen P. aeruginosa PAO1 strain, which is known to form biofilm in water supply systems and human body, under chlorine stress levels. In addition to biofilm staining, certain genes that are relevant to the stress condition were selected for gene expression analysis. The bacteria cultures were grown under chlorine stress with concentrations of 0.5, 0.7 and 1 mg/l. Six gene regions were determined related to biofilm and stress response: rpoS, bifA, migA, katB, soxR, and algC. Biofilm formation was analyzed by basic fuchsin staining, and gene expressions were quantified by quantitative real-time PCR. According to the results, highest biofilm production was observed in P. aeruginosa PAO1 wild strain under no stress conditions. Higher biofilm amounts were observed for bacteria under 0.5 and 0.7 mg/l chlorine stress compared to 1 mg/l chlorine stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amagliani G, Parlani ML, Brandi G, Sebastianelli G, Stocchi V, Schiavano GF (2012) Molecular detection of Pseudomonas aeruginosa in recreational water. Int J Environ Health Res 22(1):60–70. doi:10.1080/09603123.2011.588325

    Article  CAS  PubMed  Google Scholar 

  2. Arnold JW, Silvers S (2000) Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poult Sci 79(8):1215–1221

    Article  CAS  PubMed  Google Scholar 

  3. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH (1999) Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 43(6):1379–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chambers JR, Sauer K (2013) Small RNAs and their role in biofilm formation. Trends Microbiol 21(1):39–49. doi:10.1016/j.tim.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  5. de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11(2):279–288. doi:10.1111/j.1462-2920.2008.01792.x

    Article  PubMed  Google Scholar 

  6. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167. doi:10.1128/Cmr.15.2.167-193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edwards KJ, Saunders NA (2001) Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J Appl Microbiol 91(1):29–37. doi:10.1046/j.1365-2672.2001.01339.x

    Article  CAS  PubMed  Google Scholar 

  8. Goo E, Majerczyk CD, An JH, Chandler JR, Seo YS, Ham H, Lim JY, Kim H, Lee B, Jang MS, Greenberg EP, Hwang I (2012) Bacterial quorum sensing, cooperativity, and anticipation of stationary-phase stress. Proc Natl Acad Sci USA 109(48):19775–19780. doi:10.1073/pnas.1218092109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi:10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  10. Helke DM, Somers EB, Wong ACL (1993) Attachment of Listeria monocytogenes and Salmonella typhimurium to stainless steel and buna-N in the presence of milk and individual milk components. J Food Prot 56(6):479–484

    CAS  Google Scholar 

  11. Ito A, May T, Kawata K, Okabe S (2008) Significance of rpoS during maturation of Escherichia coli biofilms. Biotechnol Bioeng 99(6):1462–1471. doi:10.1002/bit.21695

    Article  CAS  PubMed  Google Scholar 

  12. Jones RN, Stilwell MG, Rhomberg PR, Sader HS (2009) Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007). Diagn Microbiol Infect Dis 65(3):331–334. doi:10.1016/j.diagmicrobio.2009.06.022

    Article  CAS  PubMed  Google Scholar 

  13. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189(22):8165–8178. doi:10.1128/JB.00586-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, Agodi A, Frank U, Mertens K, Schumacher M, Wolkewitz M (2011) Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infect Dis 11(1):30–38. doi:10.1016/S1473-3099(10)70258-9

    Article  PubMed  Google Scholar 

  15. Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160(4):259–266. doi:10.1016/j.resmic.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  16. Murakami K, Ono T, Viducic D, Kayama S, Mori M, Hirota K, Nemoto K, Miyake Y (2005) Role for RpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 242(1):161–167. doi:10.1016/j.femsle.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Perez LRR, de Freitas ALP, Barth AL (2012) Cystic and non-cystic fibrosis Pseudomonas aeruginosa isolates are not differentiated by the quorum-sensing signaling and biofilm production. Curr Microbiol 64(1):81–84

    Article  CAS  PubMed  Google Scholar 

  18. Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67(9):2069–2089. doi:10.1093/jac/dks196

    Article  CAS  PubMed  Google Scholar 

  19. Romsang A, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S (2013) Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J Bacteriol 195(15):3299–3308. doi:10.1128/Jb.00167-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648. doi:10.1016/j.mib.2007.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51(4):973–985. doi:10.1046/j.1365-2958.2003.03886.x

    Article  CAS  PubMed  Google Scholar 

  22. Walker JT, Jhutty A, Parks S, Willis C, Copley V, Turton JF, Hoffman PN, Bennett AM (2014) Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J Hosp Infect 86(1):16–23. doi:10.1016/j.jhin.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  23. Wood LF, Ohman DE (2012) Identification of genes in the sigma(22) regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. MBio 3(3):e00094-12. doi:10.1128/mBio.00094-12

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang HJ, Matewish M, Loubens I, Storey DG, Lam JS, Jin SG (2000) migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology 146:2509–2519

    Article  CAS  PubMed  Google Scholar 

  25. Zhanel GG, Hoban DJ, Schurek K, Karlowsky JA (2004) Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Agents 24(6):529–535. doi:10.1016/j.ijantimicag.2004.08.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Marmara University, BAPKO Project No.: FEN-A-130515-0177. We would like to thank Malatya Pazarı Co. for their benefaction to our R&D laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nüzhet Cenk Sesal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kekeç, Ö., Gökalsın, B., Karaltı, İ. et al. Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions. Curr Microbiol 73, 228–235 (2016). https://doi.org/10.1007/s00284-016-1056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1056-2

Keywords

Navigation