Skip to main content
Log in

Spongiiferula fulva gen. nov., sp. nov., a Bacterium of the Family Flavobacteriaceae Isolated from a Marine Sponge

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram stain-negative, strictly aerobic, brown-pigmented, non-motile, rod-shaped, chemoheterotrophic bacterial strain-designated A6F-119T was isolated from a marine sponge (Rhabdastrella sp.). Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the new strain represented a member of the family Flavobacteriaceae of the phylum Bacteroidetes and that it showed highest sequence similarity (93 %) to Tenacibaculum maritimum NBRC 15946T. The strain could be differentiated phenotypically from the recognized members of the family Flavobacteriaceae. The DNA G + C content of strain A6F-119T was determined to be 30.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C17:0 3-OH, and C16:1 ω7c and/or C16:1 ω6c as the major (>10 %) cellular fatty acids. A polar lipid profile was present consisting of phosphatidylethanolamine, an unidentified aminolipid, and three unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus for which the name Spongiiferula fulva gen. nov., sp. nov. is proposed. The type strain of S. fulva is A6F-119T (= KCTC 42752T = NBRC 111402T)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bernardet JF, Nakagawa Y (2003) An introduction to the family Flavobacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, an evolving electronic resource for the microbiological community, release 3.15. Springer, New York. http://link.springer-ny.com/link/service/books/10125/

  2. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  3. Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134

    Article  CAS  PubMed  Google Scholar 

  4. Collins CH, Lyne PM (1984) Microbiological methods, 5th edn. Butterworth, London

    Google Scholar 

  5. DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  6. Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromoatograms. J Lipid Res 15:126–127

    Google Scholar 

  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  9. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H, Yano Y, Satomi M (2013) Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 63:1665–1672

    Article  CAS  PubMed  Google Scholar 

  10. Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166

    Chapter  Google Scholar 

  11. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  PubMed Central  Google Scholar 

  12. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235

    Article  PubMed  Google Scholar 

  13. Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241

    Article  Google Scholar 

  14. Hyun DW, Shin NR, Kim MS, Kim PS, Jung MJ, Kim JY, Whon TW, Bae JW (2014) Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 64:1654–1661

    Article  CAS  PubMed  Google Scholar 

  15. Jooste PJ (1985) The taxonomy and significance of Flavobacterium–Cytophaga strains from dairy sources. PhD thesis, University of the Orange Free State, South Africa

  16. Khan ST, Nakagawa Y, Harayama S (2008) Fulvibacter tottoriensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 58:1670–1674

    Article  CAS  PubMed  Google Scholar 

  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  18. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  20. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  21. Lee YS, Baik KS, Park SY, Kim EM, Lee DH, Kahng HY, Jeon CO, Jung JS (2009) Tenacibaculum crassostreae sp. nov., isolated from the Pacific oyster, Crassostrea gigas. Int J Syst Evol Microbiol 59:1609–1614

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Wei J, Yang C, Lai Q, Chen Z, Li D, Zhang H, Tian Y, Zheng W, Zheng T (2013) Tenacibaculum xiamenense sp. nov., an algicidal bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 63:3481–3486

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Zhang XY, Liu C, Lin CY, Xu Z, Chen XL, Zhou BC, Shi M, Zhang YZ (2014) Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 64:973–978

    Article  CAS  PubMed  Google Scholar 

  24. Ludwig W, Klenk HP (2001) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 49–66

    Chapter  Google Scholar 

  25. Madsen L, Møller JD, Dalsgaard I (2005) Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum), hatcheries: studies on broodstock, eggs, fry and environment. J Fish Dis 28:39–47

    Article  CAS  PubMed  Google Scholar 

  26. Malik YS, Olsen K, Kumar K, Goyal SM (2003) In vitro antibiotic resistance profiles of Ornithobacterium rhinotracheale strains from Minnesota turkeys during 1996–2002. Avian Dis 47:588–593

    Article  PubMed  Google Scholar 

  27. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  28. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  29. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Meth 2:233–241

    Article  CAS  Google Scholar 

  30. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV (2013) Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. Curr Microbiol 66:16–21

    Article  CAS  PubMed  Google Scholar 

  31. Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574

    Article  CAS  PubMed  Google Scholar 

  32. Oh YS, Kahng HY, Lee DH, Lee SB (2012) Tenacibaculum jejuense sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 62:414–419

    Article  CAS  PubMed  Google Scholar 

  33. Park S, Park JM, Jung YT, Lee KC, Lee JS, Yoon JH (2014) Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie Van Leeuwenhoek 106:1139–1146

    Article  CAS  PubMed  Google Scholar 

  34. Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232

    CAS  Google Scholar 

  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  36. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  37. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652

    Article  CAS  PubMed  Google Scholar 

  38. Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Li X, Hu D, Lai Q, Shao Z (2015) Tenacibaculum holothuriorum sp. nov., isolated from the sea cucumber Apostichopus japonicus intestine. Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.000574

  41. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Worliczek HL, Kämpfer P, Rosengarten R, Tindall RBJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370

    Article  CAS  PubMed  Google Scholar 

  43. Yoon JH, Lee MH, Jung YT (2013) Pseudofulvibacter geojedonensis gen. nov., sp. nov., a polysaccharide-degrading member of the family Flavobacteriaceae isolated from seawater, and emended description of the genus Fulvibacter. Int J Syst Evol Microbiol 63:16

    Google Scholar 

Download references

Acknowledgments

We thank Professor Patricia Bergquist (University of Auckland, New Zealand) for taxonomic analysis of the sponge species. This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), and in part by a research grant (2009–2011) of the Institute for Fermentation, Osaka, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewoo Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

A specimen of marine sponge Rhabdastrella sp. Supplementary material 1 (PPTX 83 kb)

Supplementary Fig. 2

Thin-layer chromatograms showing the total polar lipid compositions of A6F-119T. Total polar lipids were detected by spraying the plate with molybdophosphoric acid, molybdenun blue, α-naphthol, and ninhydrin. PE: phosphatidylenthanolamine, UAL: unidentified aminolipid, UL: unidentified lipid. Supplementary material 2 (PPTX 742 kb)

Supplementary Fig. 3

Negative results from the API 20E, API 50CH, and API ZYM strips. Supplementary material 3 (PPTX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Adachi, K. & Kasai, H. Spongiiferula fulva gen. nov., sp. nov., a Bacterium of the Family Flavobacteriaceae Isolated from a Marine Sponge. Curr Microbiol 73, 15–21 (2016). https://doi.org/10.1007/s00284-016-1022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1022-z

Keywords

Navigation