Skip to main content

Advertisement

Log in

Microbial Pollution Tracking of Dairy Farm with a Combined PCR-DGGE and qPCR Approach

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Animal husbandry is a traditional industry with regional characteristic in the Inner Mongolia of China. Recent years, animal breeding has been one of the main pollution sources in this area, followed by domestic sewage and industrial wastewater. The pollution of livestock farm feces may accelerate the development of pathogens and antibiotic resistance genes which pose health risks to humans and animals. In present research, culture-independent molecular ecological methods based on DGGE combined with qPCR were used to investigate the pollution to surrounding environment with different degrees of livestock farm. The cluster analysis of DGGE patterns showed that the livestock farm feces from point pollution source flowed with wastewater discharge has resulted in an impacted range of at least 3000 m, but it did not cause pollution to residential water delivered from upstream of sewage drain outlet. qPCR results revealed that 5 common pathogens (Escherichia coli, Enterococcus, Staphylococcus aureus, Shigella, and Salmonella) presented decreased trend as the sampled distance from point pollution source increased. Also, qPCR assays of 10 common antibiotic resistance genes (tetO, tetL, rpp, rpoB, sul2, sulA, floR, yidY, mphA, and ermC) which cause resistance to tetracycline, rifampicin, fluoroquinolone, quinolone, and erythromycin have been found in the environmental samples. This study clearly indicates the livestock farm discharge pollutants contaminated to the surrounding environment. Our data have provided important information to pollution control in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agersø Y, Bruun MS, Dalsgaard I, Larsen JL (2007) The tetracycline resistance gene tet (E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 266(1–4):47–52

    Article  Google Scholar 

  2. Alice NP (1999) Integrated crop-livestock management systems in sub-saharan Africa. Dev Sustain 1:337

    Article  Google Scholar 

  3. Allsop K, Stickler DJ (1985) An assessment of Bacteroides fragilis group organisms as indicators of human faecal pollution. J Appl Bacteriol 58(1):95–99

    Article  CAS  PubMed  Google Scholar 

  4. Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67(1):22–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Armon R, Gold D, Brodsky M, Oron G (2002) Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Water Sci Technol 46:115–122

    CAS  PubMed  Google Scholar 

  6. Baudart J, Gradulos J, Barusseau JP, Lebaron P (2000) Salmonella spp. and fecal coliform loads in coastal waters from a point vs. nonpoint source of pollution. J Environ Qual 29:241–250

    Article  CAS  Google Scholar 

  7. Belsky AJ, Matzke A, Uselman S (1999) Survey of live stock influences on stream and riparian ecosystems in the western United States. J Soil Water Conserv 54(1):419–431

    Google Scholar 

  8. Bernhard AE, Field KG (2000) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66:4571–4574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bernhard AE, Field KG (2000) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S rDNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66(4):1587–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67(4):1494–1502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cheng CM, Lin W, Van KT, Phan L, Tran NN, Farmer D (2008) Rapid detection of Salmonella in foods using real-time PCR. J Food Prot 71(12):2436–2441

    CAS  PubMed  Google Scholar 

  12. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91

    Article  CAS  PubMed  Google Scholar 

  13. Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002) Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol 68(3):1165–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlesfsen L, Sargent M, Gill SR, Nelson KE, Reluman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fiksdal L, Maki JS, Lacroix SJ, Staley JT (1985) Survival and detection of Bacteroides spp. prospective indicator bacteria. Appl Environ Microbiol 49(1):148–150

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell 16(1):191–200

    Article  CAS  PubMed  Google Scholar 

  17. Fucik P, Novak P, Zizala D (2014) A combined statistical approach for evaluation of the effects of land use, agricultural and urban activities on stream water chemistry in small tile-drained catchments of south Bohemia, Czech Republic. Environ Earth Sci 72(6):2195–2216

    Article  CAS  Google Scholar 

  18. Godfree A, Farell J (2005) Processes for managing pathogens. J Environ Qual 34:105–113

    Article  CAS  PubMed  Google Scholar 

  19. Jiang L, Hu Xl XuT, Zhang HC, Sheng D, Yin DQ (2013) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458–460C:267–272

    Article  Google Scholar 

  20. John EW, David TJ, Valerie JH (2002) Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res 36(17):4273–4282

    Article  Google Scholar 

  21. Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109(6):1946–1956

    Article  CAS  PubMed  Google Scholar 

  22. Kogelmann WJ, Lin HS, Bryant RB et al (2004) A state wide assessment of the impacts of phosphor us-index implementation in Pennsylvania. J Soil Water Conserv 59(1):9–18

    Google Scholar 

  23. Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 73(15):4813–4823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Maciej D (2000) Activities in nonpoint pollution control in rural areas of Poland. Ecol Eng 14:429–434

    Article  Google Scholar 

  26. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541–2547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007) Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73(1):32–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Matsuda K, Tsuji H, Asahara T, Matsumoto K, Nomoto K (2009) Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol 75(7):1961–1969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Meera S, Sunil M, Baijayantimala M, Caesar S, Sharma SK (2003) Rapid detection of mutations in rpoB gene of rifampicin resistant Mycobacterium tuberculosis strains by line probe assay. Indian J Med Res 117:76–80

    Google Scholar 

  30. Morales TA, Dopson M, Athar R (2005) Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol Bioeng 90(5):543–551

    Article  CAS  PubMed  Google Scholar 

  31. Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Bree A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J (2006) Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 44(10):3484–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Peak N, Knapp CW, Yang RK, Hanfelt MM, Smith MS, Aga DS, Graham DW (2007) Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 9(1):143–151

    Article  CAS  PubMed  Google Scholar 

  34. Pei R, Cha J, Carlson KH, Pruden A (2007) Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ Sci Technol 41(14):5108–5113

    Article  CAS  PubMed  Google Scholar 

  35. Pruden A, Pei R, Storteboom H, Carlson HK (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 40(23):7445–7450

    Article  CAS  PubMed  Google Scholar 

  36. Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46(21):11541–11549

    Article  CAS  PubMed  Google Scholar 

  37. Randazzo CL, Torriani S, Akkermans ALD, de Vos WM, Vaughan EE (2002) Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ Microbiol 68(4):1882–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Rho H, Shin B, Lee O, Choi YH, Rho J, Lee J (2012) Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. J Environ Monit 14(6):1616–1621

    Article  CAS  PubMed  Google Scholar 

  39. Scott TM, Rose JB, Jenkins TM, Farrah SR, LuKasik J (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68(12):5796–5803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shen SM, Hwang HY, Fang HY (2010) Tracking biological pollution sources using PCR-DGGE technology at Ta-An Beach. Water Sci Technol 62(10):2235–2245

    Article  CAS  PubMed  Google Scholar 

  41. Simpson JM, Santo Domingo JW, Reasoner DJ (2002) Microbial source tracking: state of the science. Environ Sci Technol 36(24):5279–5288

    Article  CAS  PubMed  Google Scholar 

  42. Stewart JR, Ellender RD, Gooch JA, Jiang S, Myoda SP, Weisberg SB (2004) Recommendations for microbial source tracking: lessons from a methods comparison study. J Water Health 1(4):225–231

    Google Scholar 

  43. Stoeckel DM, Harwood VJ (2007) Performance, design, and analysis in microbial source tracking studies. Appl Environ Microbiol 73(8):2405–2415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ufnar JA, Wang S, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101(1):44–52

    Article  CAS  PubMed  Google Scholar 

  45. van Hoek AH, Mayrhofer S, Domig KJ, Flo´rez AB, Ammor MS, Mayo B, Aarts HJ (2008) Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johnsonii. Antimicrob Agents Chemother 52(1):248–252

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wang LX, Li Y, Mustapha A (2007) Rapid and simultaneous quantitation of Escherichia coli O157: H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. J Food Prot 70(6):1366–1372

    CAS  PubMed  Google Scholar 

  47. Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN (2003) Occurrence of Escherichia coli and Enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69(8):4714–4719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhang XX, Zhang T, Fang H (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biot 82(3):397–414

    Article  CAS  Google Scholar 

  50. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedjec JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. PNAS 10(9):3435–4340

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the China Agriculture Research System (Grant No. CARS-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiansong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Zhang, J., Kwok, L. et al. Microbial Pollution Tracking of Dairy Farm with a Combined PCR-DGGE and qPCR Approach. Curr Microbiol 71, 678–686 (2015). https://doi.org/10.1007/s00284-015-0887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0887-6

Keywords

Navigation