Skip to main content
Log in

The Caulobacter crescentus Transducing Phage Cr30 is a Unique Member of the T4-Like Family of Myophages

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophage Cr30 has proven useful for the transduction of Caulobacter crescentus. Nucleotide sequencing of Cr30 DNA revealed that the Cr30 genome consists of 155,997 bp of DNA that codes for 287 proteins and five tRNAs. In contrast to the 67 % GC content of the host genome, the GC content of the Cr30 genome is only 38 %. This lower GC content causes both the codon usage pattern and the amino acid composition of the Cr30 proteins to be quite different from those of the host bacteria. As a consequence, the Cr30 mRNAs probably are translated at a rate that is slower than the normal rate for host mRNAs. A phylogenetic comparison of the genome indicates that Cr30 is a member of the T4-like family that is most closely related to a new group of T-like phages exemplified by фM12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agabian-Keshishian N, Shapiro L (1970) Stalked bacteria: properties of deoxyribonucleic acid bacteriophage фCBK. J Virol 5:795–800

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  3. Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH (2014) Cell cycle constraints on capsulation and bacteriophage susceptibility. Elife 3:e03587. doi:10.7554/eLife.03587.001

    Article  PubMed Central  Google Scholar 

  4. Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. doi:10.1186/1471-2164-9-75

    Article  Google Scholar 

  5. Barrett JT, Croft RH, Ferber DM, Gerardot CJ, Schoenlein PV, Ely B (1982) Genetic mapping with Tn5-derived auxotrophs of Caulobacter crescentus. J Bacteriol 151:888–898

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Barrett JT, Rhodes CS, Ferber DM, Jenkins B, Kuhl SA, Ely B (1982) Construction of a genetic map for Caulobacter crescentus. J Bacteriol 149:869–876

    Google Scholar 

  7. Brewer TE, Stroupe ME, Jones K (2014) The genome, proteome and phylogenetic analysis of phage фM12, the founder of a new group of T4-super family phages. Virology 450–451:84–97. doi:10.1016/j.virol.2013.11.027

    Article  PubMed  Google Scholar 

  8. Carbone A (2008) Codon bias is a major factor explaining phage evolution in translationally biased hosts. J Mol Evol 66:210–223. doi:10.1007/s00239-008-9068-6

    Article  CAS  PubMed  Google Scholar 

  9. Cruveiller S, Le Saux J, Vallenet D, Lajus A, Bocs S, Médigue C (2005) MICheck: a web tool for fast check of syntactic annotations of bacterial genomes. Nucleic Acids Res 33:W471–W479. doi:10.1093/nar/gki498 (Web Server issue)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dingwall A, Shapiro L, Ely B (1990) Analysis of bacterial genome organization and replication using pulsed-field gel electrophoresis. Methods 1:160–168. doi:10.1016/S1046-2023(05)80131-8

    Article  CAS  Google Scholar 

  11. Ely B (1990) The Caulobacter crescentus genetic map. Genet Maps 5:2.100–2.103

    Google Scholar 

  12. Ely B (1991) Genetics of Caulobacter crescentus. In: Miller JH (ed) Bacterial genetics systems. methods in enzymology, vol 204. Academic Press, San Diego, pp 372–384. doi:10.1016/0076-6879(91)04019-K

    Chapter  Google Scholar 

  13. Ely B, Johnson RC (1977) Generalized transduction in Caulobacter crescentus. Genetics 87:391–399

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Gill JJ, Berry JD, Russell WK, Lessor L, Escobar-Garcia DA, Hernandez D et al (2012) The Caulobacter crescentus bacteriophage phiCbK: genomics of a canonical phage. BMC Genom 13:542

    Article  CAS  Google Scholar 

  15. Goldsmith DB, Crosti G, Dwivedi B, McDaniel LD, Varsani A, Suttle CA, Weinbauer MG, Sandaa RA, Breitbart M (2011) Development of phoH as a novel signature gene for assessing marine phage diversity. Appl Environ Microbiol 77(21):7730–7739. doi:10.1128/AEM.05531-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER (2011) A novel mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Nat Acad Sci USA 108:9963–9968. doi:10.1073/pnas.1012388108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Johnson RC, Wood NB, Ely B (1977) Isolation and characterization of bacteriophages for Caulobacter crescentus. J Gen Virol 37:323–335. doi:10.1099/0022-1317-37-2-323

    Article  Google Scholar 

  18. Lightfield J, Fram NR, Ely B (2011) Across bacterial phyla distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage. PLoS One 6(3):e17677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lucks JB, Nelson DR, Kudla GR, Plotkin JB (2008) Genome landscapes and bacteriophage codon use. PLoS Comput Biol 4(2):e1000001. doi:10.1371/journal.pcbi.1000001

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mann NH, Clokie MR, Millard A, Cook A, Wilson WH, Wheatley PJ et al (2005) The genome of S-PM2, a ‘photosynthetic’ T4-type bacteriophage that infects marine Synechococcus. J Bacteriol 187:3188–3320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A et al (2003) Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD (2006) Genetic diversity among five T4-like bacteriophages. Virol J 3:30

    Article  PubMed Central  PubMed  Google Scholar 

  24. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD (2006) Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 361:46–68

    Article  CAS  PubMed  Google Scholar 

  25. Pope WH, Hua J, Hatfull GF, Hendrix RW (2012) Sequence of the genome of sphingomonas phage PAU. In: National Center for Biotechnology Information. www.ncbi.nlm.nih.gov. Accessed 2 Feb 2015

  26. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945. doi:10.1093/bioinformatics/16.10.944

    Article  CAS  PubMed  Google Scholar 

  27. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. doi:10.1093/nar/gki366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sullivan MB, Coleman M, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR et al (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12(11):3035–3056. doi:10.1111/j.1462-2920.2010.02280.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF et al (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9:1675–1695

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494(7437):357–360. doi:10.1038/nature11921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by National Science Foundation Grant EF-0826792 and NIH Grants R25GM066526 and R25GM076277 to BE.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Ely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ely, B., Gibbs, W., Diez, S. et al. The Caulobacter crescentus Transducing Phage Cr30 is a Unique Member of the T4-Like Family of Myophages. Curr Microbiol 70, 854–858 (2015). https://doi.org/10.1007/s00284-015-0799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0799-5

Keywords

Navigation