Skip to main content
Log in

Homocitrate Synthase Expression and Lysine Content in Fruiting Body of Different Developmental Stages in Flammulina velutipes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Homocitrate synthase (EC 2.3.3.14) regulates the first step of fungal lysine biosynthesis. The gene encoding homocitrate synthase was identified in whole genomic sequencing of Flammulina velutipes and contains seven introns. The homocitrate synthase gene of F. velutipes strain W23 (Fvhcs) is 1780 bp in length and encodes a 464 amino acid protein with a predicted molecular weight 50.7 kDa. Phylogenetic analysis of Fvhcs and other homocitrate synthase proteins from diverse fungi produced a topology congruent with the current best estimate of organismal phylogeny. Analysis of protein domains by InterProScan and a motif search found that Fvhcs gene encodes homocitrate synthase protein conserved across Agaricomycotina. In addition, we sequenced the transcriptome of different developmental stages and structures of the fruiting body to analyze the expression levels of the Fvhcs gene. The data showed a correlation between Fvhcs gene expression and lysine values in different developmental stages and structures of F. velutipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bailey T, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:369–373

    Article  Google Scholar 

  3. Bhattacharjee JK (1985) α-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol 12:131–151

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharjee JK (1992) Evolution of α-aminoadipate pathway for the synthesis of lysine in fungi. In: Mortlock RP (ed) Handbook of evolution of metabolic function. CRC Press, Boca Raton, pp 47–80

    Google Scholar 

  5. Cai HH, Liu XM, Chen ZY (2013) Isolation, purification and identification of nine chemical compounds from Flammulina velutipes fruiting bodies. Food Chem 141:2873–2879

    Article  CAS  PubMed  Google Scholar 

  6. Cong WR, Liu Y, Li QZ, Zhou XW (2014) Cloning and analysis of a functional promoter of fungal immunomodulatory protein from Flammulina velutipes. Mol Biol Rep 41:4381–4387

    Article  CAS  PubMed  Google Scholar 

  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M (2001) Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp Biol Med 226:758–765

    CAS  Google Scholar 

  9. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M, Appel R, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: John MW (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  10. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  11. Grossetête S, Labedan B, Lespinet O (2010) FUNGIpath: a tool to assess fungal metabolic pathways predicted by orthology. BMC Genom 11:81

    Article  Google Scholar 

  12. Gruen HE, Wong WM (1982) Distribution of cellular amino acids, protein, and total organic nitrogen during fruitbody development in Flammulina velutipes growth on sawdust medium. Can J Bot 60:1330–1341

    Article  CAS  Google Scholar 

  13. Jiang JH, Liu F, Xu M (2006) Research of transforming lysine-rich protein gene to rice. J Fujian Agric For Univ 6:615–618

    Google Scholar 

  14. Kim H, Lee W, Park YJ, Kim H, Beak J, Chung I, Kim JK, Lee J, Kang E, Kim S (2010) Whole genome sequencing of the winter mushroom, Flammulina velutipes. Plant Anim Genomes 17:9–13

    Google Scholar 

  15. Kumar S, Tamura K, Jakobsen I, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  16. Leifa F, Pandey A, Soccol CR (2001) Production of Flammulina velutipes on coffee husk and coffee spent-ground. Braz Arch Biol Technol 44:205–212

    Article  CAS  Google Scholar 

  17. Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Liu GM, Xiaoqian Z, Peng SL, Li YR, Yang HM, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mortazavi A, Williams BA, McCue K, Schaeffer L (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  19. Nei M, Kumar S (2000) Phylogenetic trees. Molecular evolution and phylogenetics. OUP, New York, pp 73–86

    Google Scholar 

  20. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:116–120

    Article  Google Scholar 

  21. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66

    Article  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  23. Smiderlea FR, Carboneroa ER, Sassakia GL, Gorina PAJ, Iacomini M (2008) Characterization of a heterogalactan: some nutritional values of the edible mushroom Flammulina velutipes. Food Chem 108:329–333

    Article  Google Scholar 

  24. Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Casselton LA, Cheng CK, Deng JX, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA 107:11889–11894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644

    Article  CAS  PubMed  Google Scholar 

  26. Stigler SM (1989) Francis Galton’s account of the invention of correlation. Stat Sci 4:73–79

    Article  Google Scholar 

  27. Strassman M, Weinhouse S (1953) Biosynthetic pathways III: the biosynthesis of lysine Torulopsis utilis. J Am Chem Soc 75:1680–1684

    Article  CAS  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:532–606

    Article  CAS  PubMed  Google Scholar 

  30. Xu HJ (2010) Determination of nutritional components in three kinds of edible. J Anhui Agric Sci 38:7544–7546

    CAS  Google Scholar 

  31. Xu HY, Andi B, Qian JH, West A, Cook P (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64

    Article  CAS  PubMed  Google Scholar 

  32. Yang WJ, Fang Y, Liang J (2011) Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity. Food Res Int 44:1269–1275

    Article  CAS  Google Scholar 

  33. Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. J R Soc Med 17:85–97

    CAS  Google Scholar 

  34. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by special funds of National Modern Agriculture Industry Technology System Construction (Grant No. CARS24) and National Key Basic Research Program of China (Grant No. 2014CB138302). We thank the Zhejiang California International NanoSystems Institute for giving help of the genome sequencing and Beijing Genomics Institute (BGI) for giving help of the transcriptome sequencing. We thank Dr. Yongxin Tao from Mycological Research Center for guidance and help in RT-qPCR experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Liu or Bao-Gui Xie.

Additional information

W. Wang has contributed equally to this work and should be considered co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, W., Chen, BZ. et al. Homocitrate Synthase Expression and Lysine Content in Fruiting Body of Different Developmental Stages in Flammulina velutipes . Curr Microbiol 70, 821–828 (2015). https://doi.org/10.1007/s00284-015-0791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0791-0

Keywords

Navigation