Skip to main content

Advertisement

Log in

Mechanistic Aspects of the Photodynamic Inactivation of Vancomycin-Resistant Enterococci Mediated by 5-Aminolevulinic Acid and 5-Aminolevulinic Acid Methyl Ester

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vancomycin-resistant Enterococci (VRE) is a serious concern for public health. Serious infections with VRE have very limited effective antimicrobial therapy, and alternative treatment approaches are highly desirable. One promising approach might be the photodynamic antimicrobial chemotherapy. In the present study, we investigated the photodynamic inactivation (PDI) of two VRE strains mediated by 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL). The photodynamic damages to bacteria on the level of genomic DNA, the leakage of cell components, and the changes of membrane structure were investigated. After treated with 10 mM 5-ALA and irradiated by the 633 ± 10 nm LED for 60 min, 5.37 and 5.22 log10 reductions in bacterial survival were achieved for the clinical isolate of VRE and E. faecalis (ATCC 51299), respectively. After treated with 10 mM MAL and irradiated by the LED for 60 min, 5.02 and 4.91 log10 reductions in bacterial survival were observed for the two VRE strains, respectively. In addition, the photocleavage on genomic DNA and the rapid release of intracellular biopolymers were detected in PDI-treated bacteria. The intensely denatured cytoplasm and the aggregated ribosomes were also found in PDI-treated bacteria by transmission electron microscopy. Although 5-ALA and MAL-mediated PDI could induce the photocleavage on genomic DNA, the PDI of the two VRE strains might be predominantly attributed to the envelope injury, the intracellular biopolymers leakage, and the cytoplasm denature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bertoloni G, Lauro FM, Cortella G, Merchat M (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta 1475:169–174

    Article  CAS  PubMed  Google Scholar 

  2. Caminos DA, Spesia MB, Pons P, Duraniti EN (2008) Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5, 10, 15, 20-tetra (4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 7:1071–1078

    Article  CAS  PubMed  Google Scholar 

  3. Capella M, Coelho AM, Menezes S (1996) Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells. Photochem Photobiol 64:205–210

    Article  CAS  PubMed  Google Scholar 

  4. Cassidy CM, Tunney MM, McCarron PA, Donnelly RF (2009) Drug delivery strategies for photodynamic antimicrobial chemotherapy: from benchtop to clinical practice. J Photochem Photobiol B 95:71–80

    Article  CAS  PubMed  Google Scholar 

  5. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumor immunity. Nat Rev Cancer 6:535–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  8. Choi SS, Lee HK, Chae HS (2012) Comparison of in vitro photodynamic antimicrobial activity of protoporphyrin IX between endoscopic white light and newly developed narrowband endoscopic light against Helicobacter pylori 26695. J Photochem Photobiol B 117:55–60

    Article  CAS  PubMed  Google Scholar 

  9. Demidova T, Hamblin M (2005) Effects of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 6:2329–2335

    Article  Google Scholar 

  10. Denis TG, St Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2:509–520

    Article  Google Scholar 

  11. Ferro S, Ricchelli F, Monti D, Mancini G, Jori G (2007) Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int J Biochem Cell B 39:1026–1034

    Article  CAS  Google Scholar 

  12. Figueiredo RA, Anami LC, Mello I, Carvalho ED, Habitante SM, Raldi DP (2014) Tooth discoloration induced by endodontic phenothiazine dyes in photodynamic therapy. Photomed Laser Surg 32:458–462

    Article  CAS  PubMed  Google Scholar 

  13. Fotinos N, Campo MA, Popowycz F, Gurny R, Lange N (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 82:994–1015

    Article  CAS  PubMed  Google Scholar 

  14. Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N (2008) Effects on Gram-negative and Gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Animicrob Agents Chemother 52:1366–1373

    Article  CAS  Google Scholar 

  15. Gad F, Zahra T, Hasan T, Hamblin MR (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria. Animicrob Agents Chemother 48:2173–2178

    Article  CAS  Google Scholar 

  16. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease. Photochem Photobiol Sci 3:436–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Harris F, Pierpoint L (2012) Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 32:1292–1327

    Article  CAS  PubMed  Google Scholar 

  18. Jarzembowski T, Jóźwik A, Wiśniewska K, Witkowski J (2010) Flow cytometry approach study of Enterococcus faecalis vancomycin resistance by detection of vancomycin @ FL binding to the bacterial cells. Curr Microbiol 61:407–410

    Article  CAS  PubMed  Google Scholar 

  19. Je JY, Kim SK (2006) Antimicrobial action of novel chitin derivative. Biochim Biophys Acta 1760:104–109

    Article  CAS  PubMed  Google Scholar 

  20. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Ghiti G, Roncucci G (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Laser Surg Med 38:468–481

    Article  Google Scholar 

  21. Kahne D, Leimkuhler C, Lu W, Walsh CT (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Article  CAS  PubMed  Google Scholar 

  22. Kashef N, Borghei YS, Djavid GE (2013) Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagnosis Photodyn Ther 10:150–155

    Article  CAS  PubMed  Google Scholar 

  23. Li LH, Xu B (2005) Multivalent vancomycins and related antibiotics against infectious diseases. Curr Pharm Des 11:3111–3124

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Guo H, Tian Q, Zheng G, Hu Y, Fu Y, Tan H (2013) Effects of 5-aminolevulinic acid-mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res 184:1013–1021

    Article  CAS  PubMed  Google Scholar 

  25. Menezes S, Capella MA, Caldas LR (1990) Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol B 5:505–517

    Article  CAS  PubMed  Google Scholar 

  26. Nitzan Y, Ashkenazi H (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli B by cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42:408–414

    Article  CAS  PubMed  Google Scholar 

  27. Nitzan Y, Salmon-Divon M, Shporen E, Malik Z (2004) ALA induced photodynamic effects on Gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435

    Article  CAS  PubMed  Google Scholar 

  28. Pileggi G, Wataha JC, Girard M, Grad I, Scgrenzel J, Lange N, Bouillaguet S (2013) Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagnosis Photodyn Ther 10:134–140

    Article  CAS  PubMed  Google Scholar 

  29. Prasanth CS, Karunakaran SC, Paul AK, Kussovski V, Mantarevam V, Ramaiah D, Selvaraj L, Angelov I, Avramov L, Nandakumar K, Subhash N (2014) Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria. Photochem Photobiol 90:628–640

    Article  CAS  PubMed  Google Scholar 

  30. Schafer M, Schmitz C, Horneck G (1998) High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. Int J Radiat Biol 74:249–253

    Article  CAS  PubMed  Google Scholar 

  31. Spesia MB, Duraniti EN (2013) Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc (II) 2,9,16,23-tetrakis [2-(N,N,N-trimethylamino) ethoxy] phthalocyanine. J Photochem Photobiol B 125:179–187

    Article  CAS  PubMed  Google Scholar 

  32. Taubes G (2008) The bacteria fight back. Science 321:356–361

    Article  CAS  PubMed  Google Scholar 

  33. Tsai T, Yang YT, Wang TH, Chien HF, Chen CT (2009) Improved photodynamic inactivation of Gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Laser Surg Med 41:316–322

    Article  Google Scholar 

  34. Wang Y, Huang X (2014) Comparative antibacterial efficacy of photodynamic therapy and ultrasonic irrigation against Enterococcus faecalis in vitro. Photochem Photobiol 90:1084–1088

    Article  CAS  PubMed  Google Scholar 

  35. Wood S, Metcalf D, Devine D, Robinson C (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57:680–684

    Article  CAS  PubMed  Google Scholar 

  36. Xing BG, Jiang TT, Bi WG, Yang YM, Li LH, Ma ML, Chang CK, Xu B, Yeow EKL (2011) Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria. Chem Commun 47:1061–1063

    Google Scholar 

  37. Zeina B, Greenman J, Corry D, Purcell WM (2003) Antimicrobial photodynamic therapy: assessment of genotoxic effects on keratinocytes in vitro. Br J Dermatol 148:229–232

    Article  CAS  PubMed  Google Scholar 

  38. Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9:27

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Kewu Yang at the College of Chemistry and Materials Science, Northwest University, China, for providing the bacterial strains. This work was supported by the National Natural Science Foundation of China (81401710) and China Postdoctoral Science Foundation (2014M562424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiru Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhou, Y., Wang, L. et al. Mechanistic Aspects of the Photodynamic Inactivation of Vancomycin-Resistant Enterococci Mediated by 5-Aminolevulinic Acid and 5-Aminolevulinic Acid Methyl Ester. Curr Microbiol 70, 528–535 (2015). https://doi.org/10.1007/s00284-014-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0757-7

Keywords

Navigation