Skip to main content
Log in

Real-Time Cell Analysis for Monitoring Cholera Toxin-Induced Human Intestinal Epithelial Cell Response

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The pathogenic mechanism of Vibrio cholerae manifests as diarrhea and causes life-threatening dehydration. Here, we observe the human intestinal epithelial cells (HIEC) response to Cholera toxin (CT) by a real-time cell analysis (RTCA) platform, and disclose the difference from CT-induced cytotoxicity and others in HIEC. An HIEC cell of 1.0 × 105 cells/mL was characterized as the suitable concentration for each well. For experimentation, the assay requires an inoculation of CT dissolved in Dulbecco’s phosphate-buffered saline with 0.1 % gelatin for a period of 18–25 h. The dimensionless impedance cell index curve presented characteristic dose- and time-dependent drop responses at the first stage, and the CT-induced cytotoxicity was the most remarkable following exposure for 18–25 h (P = 0.0002). Following the obvious cytotoxic reaction, the CI curve gradually increased over time until the original CI value, indicating that self-recovery occurred. The CT-induced CI curve for HIEC was different from that induced by other toxins, including diphtheria and Clostridium difficile toxin. Collectively, these results suggest that the CT-induced cytotoxicity in HIEC was absolutely different from that induced by C. difficile and other toxins because of the different pathogeneses that were correlated with the specific CI curve generated by the RTCA system. In summary, our data show that the assay described here is a convenient and rapid high-throughput tool for real-time monitoring of host cellular responses to CT on the basis of the characteristic CI curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atienza JM, Zhu J, Wang X, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10:795–805

    Article  CAS  PubMed  Google Scholar 

  2. Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47:236–242

    Article  CAS  PubMed  Google Scholar 

  3. Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI (2007) Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 266:129–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 21:77–92

    Article  PubMed  Google Scholar 

  5. Donta ST (1974) Differentiation between the steroidogenic effects of cholera enterotoxin and adrenocorticotropin through use of a mutant adrenal cell line. J Infect Dis 129:728–731

    Article  CAS  PubMed  Google Scholar 

  6. Guerrant RL, Brunton LL, Schnaitman TC, Rebhun LI, Gilman AG (1974) Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun 10:320–327

    PubMed Central  CAS  PubMed  Google Scholar 

  7. He X, Wang J, Steele J, Sun X, Nie W, Tzipori S, Feng H (2009) An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins. J Microbiol Methods 78:97–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Holmes RK, Twiddy EM (1983) Characterization of monoclonal antibodies that react with unique and cross-reacting determinants of cholera enterotoxin and its subunits. Infect Immun 42:914–923

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Holmgren J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature 292:413–417

    Article  CAS  PubMed  Google Scholar 

  10. Irelan JT, Wu MJ, Morgan J, Ke N, Xi B, Wang X, Xu X, Abassi YA (2011) Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis. J Biomol Screen 16:313–322

    Article  CAS  PubMed  Google Scholar 

  11. Jin D, Luo Y, Zheng M, Li H, Zhang J, Stampfl M, Xu X, Ding G, Zhang Y, Tang YW (2013) Quantitative detection of Vibrio cholera toxin by real-time and dynamic cytotoxicity monitoring. J Clin Microbiol 51:3968–3974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kanwar JR, Kanwar RK (2009) Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunol 10:7

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kaper JB, Morris JG Jr., Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  CAS  PubMed  Google Scholar 

  15. Krysko DV, Vanden Berghe T, Parthoens E, D’Herde K, Vandenabeele P (2008) Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol 442:307–341

    Article  PubMed  Google Scholar 

  16. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Serra J, Gutierrez A, Munoz-Capo S, Navarro-Palou M, Ros T, Amat JC, Lopez B, Marcus TF, Fueyo L, Suquia AG, Gines J, Rubio F, Ramos R, Besalduch J (2014) xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies. Onco Targets Ther 7:985–994

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  19. Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Annu Rev Biochem 48:581–600

    Article  CAS  PubMed  Google Scholar 

  20. Ryder AB, Huang Y, Li H, Zheng M, Wang X, Stratton CW, Xu X, Tang YW (2010) Assessment of Clostridium difficile infections by quantitative detection of tcdB toxin by use of a real-time cell analysis system. J Clin Microbiol 48:4129–4134

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sears CL, Kaper JB (1996) Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev 60:167–215

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Slanina H, Konig A, Claus H, Frosch M, Schubert-Unkmeir A (2011) Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Methods 84:101–108

    Article  CAS  PubMed  Google Scholar 

  23. Solly K, Wang X, Xu X, Strulovici B, Zheng W (2004) Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2:363–372

    Article  CAS  PubMed  Google Scholar 

  24. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G (2008) Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 445:29–76

    Article  CAS  PubMed  Google Scholar 

  26. Tian D, Zhang W, He J, Liu Y, Song Z, Zhou Z, Zheng M, Hu Y (2012) Novel, real-time cell analysis for measuring viral cytopathogenesis and the efficacy of neutralizing antibodies to the 2009 influenza A (H1N1) virus. PLoS One 7:e31965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Vanden Broeck D, Horvath C, De Wolf MJ (2007) Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol 39:1771–1775

    Article  CAS  PubMed  Google Scholar 

  28. Witkowski PT, Schuenadel L, Wiethaus J, Bourquain DR, Kurth A, Nitsche A (2010) Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances. Biochem Biophys Res Commun 401:37–41

    Article  CAS  PubMed  Google Scholar 

  29. Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161

    Article  CAS  PubMed  Google Scholar 

  30. Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X, Abassi YA (2006) Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem 78:35–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the program for Zhejiang Leading Team of Science and Technology Innovation (2011R50021-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Jin.

Additional information

Julian Ye and Yun Luo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Luo, Y., Fang, W. et al. Real-Time Cell Analysis for Monitoring Cholera Toxin-Induced Human Intestinal Epithelial Cell Response. Curr Microbiol 70, 536–543 (2015). https://doi.org/10.1007/s00284-014-0752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0752-z

Keywords

Navigation