Skip to main content

Advertisement

Log in

First Study of Different Insect Cells to Triatoma Virus Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The use of viruses for biological control is a new option to be considered. The family Dicistroviridae, which affects only invertebrates, is one of the families that have been proposed for this purpose. The Triatoma virus (TrV), a member of this family, affects triatomine transmitters of Chagas disease, which is endemic in Latin America but also expanding its worldwide distribution. To this end, we attempted virus replication in Diptera, Aedes albopictus (clone C6/36) and Lepidoptera Spodoptera frugiperda (SF9, SF21) and High Five (H5) cell lines. The methodologies used were transfection process, direct inoculation (purified virus), and inoculation of purified virus with trypsin. Results were confirmed by SDS-PAGE, Western blotting, RT-PCR, electron microscopy, and immunofluorescence. According to the results obtained, further analysis of susceptibility/infection of H5 cells to TrV required to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agirre J (2009) Structural basis of the stability, infectivity and (dis)assembly process of Triatoma virus (TrV). Tesis doctoral, Universidad del País Vasco, Leioa, p 148

  2. Agirre J, Aloria K, Arizmendi JM, Iloro I, Elortza F, Sánchez-Eugenia R, Marti GA, Neumann E, Rey FA, Guerin DMA (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101. doi:10.1016/j.virol.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  3. Bonning BC, Miller AW (2010) Dicistroviruses. Ann Rev Entomol 55:129–150. doi:10.1146/annurev-ento-112408-085457

    Article  CAS  Google Scholar 

  4. Boyapalle S, Pal N, Miller WA, Bonning BC (2007) A glassy-winged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). J Invert Pathol 94:130–139. doi:10.1016/j.jip.2006.09.010

    Article  CAS  Google Scholar 

  5. Christian PD, Scotti PD (1996) Biopesticides from small RNA viruses of insects: aspects of their in vitro production. In Maramorosch K, Loeb MJ (eds) Invertebrate cell culture: looking toward the twenty first century. Proceedings of the IX international conference on invertebrate cell culture, society for in vitro biology, pp 73–81

  6. Christian PD, Scotti PD (1998) Picorna-like viruses of insects. In: Miller LK, Ball LA (eds) The insect viruses. Plenum Press, New York, pp 301–336

    Chapter  Google Scholar 

  7. Christian PD, Scotti PD (2008) Dicistroviruses. In: Mahy BWJ, Vanregenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Academic Press/Elsevier, Oxford, pp 37–44

    Chapter  Google Scholar 

  8. Czibener C, La Torre JL, Muscio OA, Ugalde RA, Scodeller EA (2000) Nucleotide sequence analysis of Triatoma virus shows that it is a member of a novel group of insect RNA viruses. J Gen Virol 81:1149–1154

    CAS  PubMed  Google Scholar 

  9. Gordon KHJ, Waterhouse PM (2006) Small RNA viruses of insects: expression in plants and RNA silencing. In: Bonning BC (ed) Insect viruses: biotechnological applications. Elsevier, San Diego, pp 459–502

    Chapter  Google Scholar 

  10. Hoshino Y, Jones RW, Ross J, Kapikian AZ (2005) Porcine rotavirus strain gottfried-based human rotavirus candidate vaccines: construction and characterization. Vaccine 23:3791–3799. doi:10.1016/j.vaccine.2005.02.024

    Article  CAS  PubMed  Google Scholar 

  11. ICTV (2014). International Committee of Taxonomy of Viruses, Index 2014, online

  12. Luo P, Hu CQ, Ren CH, Sun ZF (2004) Taura syndrome virus and mammalian cell lines. Emerg Infect Dis 10:2260–2261. doi:10.3201/eid1012.040537

    Article  PubMed Central  PubMed  Google Scholar 

  13. Marti G, González ET, Garcia JJ, Viguera AR, Guerin DMA, Echeverría MG (2008) AC-ELISA and RT-PCR assays for the diagnosis of Triatoma virus (TrV) in triatomines (Hemiptera: Reduviidae) species. Arch Virol 153:1427–1432

    Article  CAS  PubMed  Google Scholar 

  14. Masoumi A, Hanzlik TN, Christian PD (2003) Functionality of the 5′- and intergenic IRES elements of cricket paralysis virus in a range of insect cell lines, and its relationship with viral activities. Virus Res 94:113–120. doi:10.1016/S0168-1702(03)00139-4

    Article  CAS  PubMed  Google Scholar 

  15. Moore NF, Kearns A, Pullin JSK (1980) Characterization of cricket paralysis virus-induced polypeptides in drosophila cells. J Virol 33:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Muscio OA, La Torre JL, Bonder MA, Scodeller EA (1997) Triatoma virus pathogenicity in laboratory colonies of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 34:253–256

    Article  CAS  PubMed  Google Scholar 

  17. Muscio OA, La Torre JL, Scodeller EA (1987) Small nonoccluded viruses from triatomine bug Triatoma infestans (Hemiptera: Reduviidae). J Invertebr Pathol 49:218–220. doi:10.1016/0022-2011(87)90163-7

    Article  CAS  PubMed  Google Scholar 

  18. Office International des Epizooties (2000) Diagnostic manual for aquatic animal health diseases, 3rd edn. OIE, Paris

    Google Scholar 

  19. Pantoja CR, Navarro SA, Naranjo J, Lightner DV, Gerba CP (2004) Nonsusceptibility of primate cells to Taura syndrome virus. Emerg Infect Dis 10:2106–2112. doi:10.3201/eid1012.040419

    Article  PubMed Central  PubMed  Google Scholar 

  20. Rozas-Dennis GS, Cazzaniga NJ (2000) Effect of Triatoma Virus (TrV) on fecundity and moulting in Triatoma infestans (Hemiptera: Reduviidae). Ann Trop Med Parasitol 94:633–641. doi:10.1080/00034980050152067

    CAS  PubMed  Google Scholar 

  21. Scotti PD, Hoefakker P, Dearing S (1996) The production of cricket paralysis virus in suspension cultures of insect cell lines. J Invertebr Pathol 68:109–112. doi:10.1006/jipa.1996.0067

    Article  CAS  PubMed  Google Scholar 

  22. Wise DJ, Carter GR (2005) Virus-cell interactions and viral pathogenesis. In: Carter GR, Wise DJ, Flores EF (eds) A concise review of veterinary virology. International Veterinary Information Service, Ithaca. (www.ivis.org). Accessed 8 Feb 2005; A3404.0205

  23. World Health Organization (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases. Second WHO report on neglected tropical diseases, p 137

Download references

Acknowledgments

This study was partially funded by Grants PIP 0007 (CONICET) and PICT 2011-1081 (ANPCyT), Argentina. We thank the Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina, and CEPAVE (Centro de Estudios Parasitológicos y de Vectores) where this work was developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabriela Echeverría.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susevich, M.L., Marti, G.A., Metz, G.E. et al. First Study of Different Insect Cells to Triatoma Virus Infection. Curr Microbiol 70, 470–475 (2015). https://doi.org/10.1007/s00284-014-0746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0746-x

Keywords

Navigation