Skip to main content
Log in

Evaluation of Petrifilm™ Aerobic Count Plates as an Equivalent Alternative to Drop Plating on R2A Agar Plates in a Biofilm Disinfectant Efficacy Test

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This paper compares Petrifilm™ aerobic count (AC) plates to drop plating on R2A agar plates as an alternative method for biofilm bacteria enumeration after application of a disinfectant. A Pseudomonas aeruginosa biofilm was grown in a Centers for Disease Control and Prevention biofilm reactor (ASTM E2562) and treated with 123 ppm sodium hypochlorite (as free chlorine) according to the Single Tube Method (ASTM E2871). Aliquots from the same dilution tubes were plated on Petrifilm™ AC plates and drop plated on R2A agar plates. The Petrifilm™ AC and R2A plates were incubated for 48 and 24 h, respectively, at 36 ± 1 °C. After nine experimental runs performed by two technicians, the mean difference in biofilm log densities [log biofilm density (LD) = log10(CFU/cm2)] between the two methods for control coupons, treated coupons, and log reduction (LR) was 0.052 (p = 0.451), −0.102 (p = 0.303), and 0.152 (p = 0.313). Equivalence testing was used to assess equivalence of the two plating methods. The 90 % confidence intervals for the difference in control and treated mean LDs between methods were (−0.065, 0.170) and (−0.270, 0.064), both of which fall within a (−0.5, +0.5) equivalence criterion. The 90 % confidence interval for the mean LR difference (−0.113, 0.420) also falls within this equivalence criterion. Thus, Petrifilm™ AC plates were shown to be statistically equivalent to drop plating on R2A agar for the determination of control LDs, treated LDs, and LR values in an anti-biofilm efficacy test. These are the first published results that establish equivalency to a traditional plate counting technique for biofilms and for a disinfectant assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. 3 M™ (2004) 3 M™ petrifilm™ aerobic count plate: instructions for use. In: M. Microbiology (ed), 3 M™, St. Paul, p 3. http://multimedia.3m.com/mws/media/695832O/product-instructions-3m-petrifilm-aerobic-count-plate.pdf?fn=34871378260.pdf

  2. American Public Health Association (APHA), American Water Works Association, Water Environment Federation (2005) Standard Methods for the Examination of Water and Wastewater, 21st edn American Public Health Association, Washington, 4–67:4–68

  3. Aragonès L, Escudé C, Visa P, Salvi L, Mocé-Llivina L (2012) New insights for rapid evaluation of bactericidal activity: a semi-automated bioluminescent ATP assay. J Appl Microbiol 113:114–125. doi:10.1111/j.1365-2672.2012.05320.x

    Article  PubMed  Google Scholar 

  4. ASTM Standard E1054, 2008 (2013) Standard test methods for evaluation of inactivators of antimicrobial agents. ASTM International, West Conshohocken. doi:10.1520/E1054-08R13

    Google Scholar 

  5. ASTM Standard E2562 (2007) Standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. ASTM International, West Conshohocken. doi:10.1520/E2562-12

    Google Scholar 

  6. ASTM Standard E2871 (2013) Standard test method for evaluating disinfectant efficacy against Pseudomonas aeruginosa biofilm grown in CDC biofilm reactor using single tube method. ASTM International, West Conshohocken. doi:10.1520/E2871

    Google Scholar 

  7. Bao N, Jagadeesan B, Bhunia AK, Yao Y, Lu C (2008) Quantification of bacterial cells based on autofluorescence on a microfluidic platform. J Chromatogr A 1181:153–158. doi:10.1016/j.chroma.2007.12.048

    Article  CAS  PubMed  Google Scholar 

  8. Beuchat LR, Copeland F, Curiale MS, Danisavich T, Gangar V, King BW, Lawlis TL, Likin RO, Okwusoa J, Smith CF, Townsend DE (1998) Comparison of the simplate (TM) total plate count method with petrifilm (TM), redigel (TM), and conventional pour-plate methods for enumerating aerobic microorganisms in foods. J Food Prot 61:14–18

    CAS  PubMed  Google Scholar 

  9. Buckingham-Meyer K, Goeres D, Hamilton M (2007) Comparative evaluation of biofilm disinfectant efficacy tests. J Microbiol Methods 70:236–244. doi:10.1016/j.mimet.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  10. EN1500 (2013) European Committee for Standardization. Chemical disinfectants and antiseptics—hygienic handrub—test method and requirements (phase2/step2) (European standard EN 1500), Brussels, Belgium: Central Secretariat

  11. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351. doi:10.1021/es0257164

    Article  CAS  PubMed  Google Scholar 

  12. Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44:121–129. doi:10.1016/S0167-7012(00)00241-4

    Article  CAS  PubMed  Google Scholar 

  13. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. doi:10.1016/j.ijantimicag.2009.12.011

    Article  PubMed  Google Scholar 

  14. Kudaka J, Horii T, Tamanaha K, Itokazu K, Nakamura M, Taira K, Nidaira M, Okano S, Kitahara A (2010) Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera. J Food Prot 73:1529–1532

    PubMed  Google Scholar 

  15. Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. doi:10.1016/S0966-842X(00)01913-2

    Article  CAS  PubMed  Google Scholar 

  16. McHugh IO, Tucker AL (2007) Flow cytometry for the rapid detection of bacteria in cell culture production medium. Cytom A 71:1019–1026. doi:10.1002/cyto.a.20488

    Article  Google Scholar 

  17. Minitab 17 Statistical Software (2013). State College, PA: Minitab, Inc. http://www.minitab.com

  18. Miranda R, Neto GG, de Freitas R, de Carvalho AF, Nero LA (2011) Enumeration of bifidobacteria using petrifilm (TM) AC in pure cultures and in a fermented milk manufactured with a commercial culture of Streptococcus thermophilus. Food Microbiol 28:1509–1513. doi:10.1016/j.fm.2011.07.002

    Article  PubMed  Google Scholar 

  19. Nelson MT, LaBudde RA, Tomasino SF, Pines RM (2013) Comparison of 3M (TM) petrifilm (TM) aerobic count plates to standard plating methodology for use with AOAC antimicrobial efficacy methods 955.14, 955.15, 964.02, and 966.04 as an alternative enumeration procedure: collaborative study. J AOAC Int 96:717–722. doi:10.5740/jaoacint.12-469

    Article  CAS  PubMed  Google Scholar 

  20. Nero LA, Rodrigues LDA, Vicosa GN, Tassinari MB (2008) Performance of petrifilm aerobic count plates on enumeration of lactic acid bacteria in fermented milks. J Rapid Methods Autom Microbiol 16:132–139

    Article  Google Scholar 

  21. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  22. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. doi:10.1111/j.1574-6976.2009.00200.x

    CAS  PubMed  Google Scholar 

  23. Pascaud A, Amellal S, Soulas ML, Soulas G (2009) A fluorescence-based assay for measuring the viable cell concentration of mixed microbial communities in soil. J Microbiol Methods 76:81–87. doi:10.1016/j.mimet.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  24. Paulsen P, Schopf E (2001) Experiences with a multiple sector inoculation technique for petrifilm aerobic count for examination of minced meat. Fleischwirtsch 81:105–106

    Google Scholar 

  25. Richter SJ, Richter C (2007) A method for determining equivalence in industrial applications. Qual Eng 14:375–380. doi:10.1081/QEN-120001876

    Article  Google Scholar 

  26. Salaimeh AA, Campion JJ, Gharaibeh BY, Evans ME, Saito K (2011) Real-time quantification of viable bacteria in liquid medium using infrared thermography. Infrared Phys Technol 54:517–524. doi:10.1016/j.infrared.2011.08.004

    Article  CAS  Google Scholar 

  27. Trung TT, Hetzer A, Gohler A, Topfstedt E, Wuthiekanun V, Limmathurotsakul D, Peacock SJ, Steinmetz I (2011) Highly sensitive direct detection and quantification of Burkholderia pseudomallei bacteria in environmental soil samples by using real-time PCR. Appl Environ Microbiol 77:6486–6494. doi:10.1128/aem.00735-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. U.S. Environmental Protection Agency (2012) Product performance test guidelines: OCSPP 810.2200 disinfectants for use on hard surfaces-efficacy data recommendations (EPA 712-C-07-074). Office of Chemical Safety and Pollution Prevention

  29. Zelver N, Hamilton M, Goeres D, Heersink J (2001) Development of a standardized antibiofilm test. Method Enzymol 337:363–376. doi:10.1016/S0076-6879(01)37025-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the Montana State University Undergraduate Scholars Program and the Center for Biofilm Engineering. Special thanks to Dr. Michael J. Swarovsky and 3 M™ for providing the Petrifilm™ AC plates and additional support throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Goeres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, B.G., Walker, D.K., Goveia, D.E. et al. Evaluation of Petrifilm™ Aerobic Count Plates as an Equivalent Alternative to Drop Plating on R2A Agar Plates in a Biofilm Disinfectant Efficacy Test. Curr Microbiol 70, 450–456 (2015). https://doi.org/10.1007/s00284-014-0738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0738-x

Keywords

Navigation