Skip to main content
Log in

Riboflavin Level Manipulates the Successive Developmental Sequences in Aspergillus nidulans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Auxotrophic markers are useful in fungal genetic analysis. Among the auxotrophic markers, riboB2 is one of the most commonly used markers in many laboratory strains. However, riboB2 mutants in Aspergillus nidulans confer self-sterility and thus are unable to form hybrid cleistothecia by outcross when both parent strains harbor riboB2 auxotrophic marker under the standard protocol. To assess the role of riboflavin during the different developmental stages of A. nidulans, the limited concentrations of riboflavin were monitored. The commonly used dosage of riboflavin (2.5 µg/ml) in the standard medium recipe is enough for hyphal growth and conidiation in the riboflavin auxotrophic riboB2 mutants (enough at 0.02 and 0.5 μg/ml, respectively) in A. nidulans. However, the dosage is not enough to support mature cleistothecium formation. Furthermore, the self-sterile defects in riboB2 mutants on standard medium could be restored by the addition of 25 μg/ml riboflavin, although the required riboflavin concentrations are varied in different genotype strains in A. nidulans. Most importantly, the outcross between riboB2 mutants could also be achieved by the supply of riboflavin in the sexual developmental stage. Our results highlight the potential roles of auxotrophic markers in the development of fungi and improve the efficiency of the genetic analysis in A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75(2):321–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Aguirre J (1993) Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol 8(2):211–218

    Article  CAS  PubMed  Google Scholar 

  3. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter G (2001) Biosynthesis of riboflavin. Vitam Horm 61:1–49

    Article  CAS  PubMed  Google Scholar 

  4. Bruggeman J, Debets AJ, Hoekstra RF (2004) Selection arena in Aspergillus nidulans. Fungal Genet Biol 41(2):181–188

    Article  PubMed  Google Scholar 

  5. Etxebeste O, Garzia A, Espeso EA, Ugalde U (2010) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18(12):569–576

    Article  CAS  PubMed  Google Scholar 

  6. Fassbinder F, Kist M, Bereswill S (2000) Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. FEMS Microbiol Lett 191(2):191–197

    Article  CAS  PubMed  Google Scholar 

  7. Fischer M, Bacher A (2008) Biosynthesis of vitamin B2: structure and mechanism of riboflavin synthase. Arch Biochem Biophys 474(2):252–265

    Article  CAS  PubMed  Google Scholar 

  8. Han D-M, Chae K-S, Han K-H (2008) Sexual development in Aspergillus nidulans. Mycol Ser 26:279–299

    CAS  Google Scholar 

  9. Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41(2):299–309

    Article  CAS  PubMed  Google Scholar 

  10. Han KH (2009) Molecular genetics of Emericella nidulans sexual development. Mycobiology 37(3):171–182

    Article  PubMed Central  PubMed  Google Scholar 

  11. Juarez O, Nilges MJ, Gillespie P, Cotton J, Barquera B (2008) Riboflavin is an active redox cofactor in the Na+ pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 283(48):33162–33167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, Wosten HA (2013) Development in Aspergillus. Stud Mycol 74(1):1–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kuttin ES, Kaplan W, Scholer HI, Burtscher H, Kohler H (1985) Sexual and asexual reproduction of Aspergillus nidulans in vivo. Mykosen 28(3):109–116

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann M, Degen S, Hohmann HP, Wyss M, Bacher A, Schramek N (2009) Biosynthesis of riboflavin. Screening for an improved GTP cyclohydrolase II mutant. FEBS J 276(15):4119–4129

    Article  CAS  PubMed  Google Scholar 

  15. Oakley CE, Weil CF, Kretz PL, Oakley BR (1987) Cloning of the riboB locus of Aspergillus nidulans. Gene 53(2–3):293–298

    Article  CAS  PubMed  Google Scholar 

  16. Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53(6):1611–1623

    Article  CAS  PubMed  Google Scholar 

  17. Stahmann KP, Arst HN Jr, Althofer H, Revuelta JL, Monschau N, Schlupen C, Gatgens C, Wiesenburg A, Schlosser T (2001) Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol 3(9):545–550

    Article  CAS  PubMed  Google Scholar 

  18. Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc 2(4):822–830

    Article  CAS  PubMed  Google Scholar 

  19. Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2(4):811–821

    Article  CAS  PubMed  Google Scholar 

  20. Vallim MA, Miller KY, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C-2/H-2-Zn+2 finger transcription factor required for sexual reproduction. Mol Microbiol 36(2):290–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (NSFC) to S. Zhang (No. 31200057), and to L. Lu (No. 31370112); NSF of Jiangsu Province of China to S. Zhang (No. BK2012451); Natural Science Research of Jiangsu Higher Education Institutions of China to S. Zhang (No. 12KJB180006), and to L. Lu (Grant No. 11KJA180005); and the Special Fund for the Doctoral Program of Higher Education Funding to L. Lu (No. 20123207110012) and to S. Zhang (No. 20123207120015); the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and the Research. A. nidulans strain TN02A7 was a gift of Oakley, B. R. (Ohio State University, Columbus, Ohio, USA); strain GR5 was from FGSC (http://www.fgsc.net); RJMP139.8 was a gift from Nancy P. Keller (University of Wisconsin).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizhu Zhang or Ling Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Zhang, S., Zhang, S. et al. Riboflavin Level Manipulates the Successive Developmental Sequences in Aspergillus nidulans . Curr Microbiol 70, 637–642 (2015). https://doi.org/10.1007/s00284-014-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0723-4

Keywords

Navigation