Skip to main content
Log in

A Constitutive Unregulated Expression of β-Galactosidase in Lactobacillus fermentum M1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A constitutively β-galactosidase (LacL)-producing Lactobacillus fermentum M1 isolated from fermented milk was found to produce β-galactosidase in the presence of glucose. β-galactosidase activity produced in glucose (30 mM) medium was 2.17 U/mL as compared to 2.27 and 2.19 U/mL with galactose and lactose, respectively. When a combination of glucose (30 or 60 mM) with galactose (30 mM) was used as carbon source, β-galactosidase activity was not repressed rather was found increased when compared to carbon sources used individually. In real-time PCR analysis of mRNA synthesized on individual and combined carbon sources, repression of the lacL gene expression was not observed. This observation suggests that the strain M1 lacked normal carbon catabolite repression. Examination of nucleotide sequence of lacL identified two catabolite responsive elements (cre): cre1 located downstream near the promoter region and cre2 within the coding sequence. Each of which differed from the 14-bp consensus by a single nucleotide. In cre1, it is C in place of highly conserved T at position 1 in the consensus. In cre 2, it is G in place of C, a residue completely conserved at position 13. Since catabolite genes in Gram-positive bacteria are regulated by carbon catabolite protein A (CcpA) through interaction with DNA at a specific cis-acting cre, it is assumed that base changes at conserved position in the cre elements disrupt CcpA binding and thereby leading to constitutive expression of lacL gene. The study noted to be the first report about the constitutive production of β-galactosidase in L. fermentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci USA 103:3816–3821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Boels IC, Ramos A, Kleerebezem M, Devos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Citti JE, Sandine WE, Elliker PR (1965) β-galactosidase of Streptococcus lactis. J Bacteriol 89:937–942

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fortina MG, Ricci G, Mora D, Guglielmetti S, Manachini PL (2003) Unusual organization for lactose and galactose gene clusters in Lactobacillus helveticus. Appl Environ Microbiol 69:3238–3243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gosalbes MJ, Monedero V, Perez-Martinez G (1999) Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 181:3928–3934

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Harley C, Reynolds R (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hickey MW, Hillier AJ, Jago GR (1986) Transport and metabolism of lactose, glucose and galactose in homofermentative lactobacilli. Appl Environ Microbiol 51:825–831

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994) Use of homologous expression–secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol 60:1401–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hsu CA, Yu RC, Chou CC (2005) Production of beta-galactosidase by bifidobacteria as influenced by various culture conditions. Int J Food Microbiol 104:197–206

    Article  CAS  PubMed  Google Scholar 

  10. Hueck CJ, Hillen W, Saier MH Jr (1994) Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518

    Article  CAS  PubMed  Google Scholar 

  11. Hung MN, Xia Z, Hu NT, Lee BH (2001) Molecular and biochemical analysis of two β-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Husain Q (2010) Beta galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62

    Article  CAS  PubMed  Google Scholar 

  13. Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) β-galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416

    Article  CAS  PubMed  Google Scholar 

  14. Kim JW, Rajagopal SN (2000) Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiol 45:29–34

    Article  CAS  Google Scholar 

  15. Kim TY, Lee JM, Chang HC, Chung DK, Lee J-H, Kin JH, Lee HJ (1999) Effect of temperature and carbon source on the expression of β-galactosidase gene of Lactococcus lactis ssp. lactis ATCC 7962. J Microbiol Biotechnol 9:201–205

    CAS  Google Scholar 

  16. Krüger S, Hecker M (1995) Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol 177:5590–5597

    PubMed Central  PubMed  Google Scholar 

  17. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175

    Google Scholar 

  18. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344

    CAS  PubMed  Google Scholar 

  19. Malinovska RJ, Fernandes P, Winkelhausen E, Fonseca L (2012) Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Appl Biochem Biotechnol 168:1197–1211

    Article  Google Scholar 

  20. Marasco R, Muscariello L, Rigano M, Sacco M (2002) Mutational analysis of the bglH catabolite-responsive element (cre) in Lactobacillus plantarum. FEMS Microbiol Lett 208:143–146

    Article  CAS  PubMed  Google Scholar 

  21. Marciniak BC, Pabijaniak M, de Jong A, Dűhring R, Seidel G, Hillen W, Kuipers OP (2012) High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genom 13:401–415

    Article  CAS  Google Scholar 

  22. Mitra S, Chakrabartty PK, Biswas SR (2005) Production and characterization of nisin- like peptide produced by a strain of Lactococcus lactis isolated from fermented milk. Curr Microbiol 51:183–187

    Article  CAS  PubMed  Google Scholar 

  23. Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28:1206–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH Jr (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381

    Article  CAS  PubMed  Google Scholar 

  25. Murad HA, Refaea RI, Aly EM (2011) Utilization of UF-permeate for production of β-galactosidase by lactic acid bacteria. Pol J Microbiol 60:139–144

    CAS  PubMed  Google Scholar 

  26. Oliveira C, Guimarães PM, Domingues L (2011) Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 29:600–609

    Article  CAS  PubMed  Google Scholar 

  27. Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized and β-galactosidase in food processing industries. Enzyme Res 2010:1–16

    Article  Google Scholar 

  28. Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG (2011) Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res 39:2931–2942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Schwab C, Lee V, Sřrensen KI, Gänzle MG (2011) Production of galactooligosaccharides and heterooligosaccharides with disrupted cell extracts and whole cells of lactic acid bacteria and bifidobacteria. Int Dairy J 21:748–754

    Article  CAS  Google Scholar 

  30. Smith CA, Cooper PK, Hanawalt PC (1981) DNA repair, a laboratory manual of research procedures. In: Friedberg EC, Hanawalt PC (eds) Measurement of repair replication by equilibrium sedimentation. Marcel Dekker, New York, pp 289–305

    Google Scholar 

  31. Tsai YK, Lin TH (2006) Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. J Appl Microbiol 100:446–459

    Article  CAS  PubMed  Google Scholar 

  32. van den Bogaard PT, Kleerebezem M, Kuipers OP, de Vos WM (2000) Control of lactose transport, β-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate dependent phosphotransferase system sugar. J Bacteriol 182:5982–5989

    Article  PubMed Central  PubMed  Google Scholar 

  33. Vasiljevic T, Jelen P (2002) Lactose hydrolysis in milk as affected by neutralizers used for the preparation of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842. Innov Food Sci Emerg 3:175–184

    Article  CAS  Google Scholar 

  34. Vasiljevic T, Jelen P (2003) Oligosaccharide production and proteolysis during lactose hydrolysis using crude cellular extracts from lactic acid bacteria. Lait 8:453–467

    Article  Google Scholar 

  35. Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 87:6238–6242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP (2007) Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:1366–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swadesh Ranjan Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arukha, A.P., Mukhopadhyay, B.C., Mitra, S. et al. A Constitutive Unregulated Expression of β-Galactosidase in Lactobacillus fermentum M1. Curr Microbiol 70, 253–259 (2015). https://doi.org/10.1007/s00284-014-0711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0711-8

Keywords

Navigation