Skip to main content
Log in

In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Most important during probiotic selection are gastric acid and bile tolerance, the adhesion to the luminal epithelium to colonize the lower gastrointestinal tract of a human and safety for human consumption. The aim of this study was to evaluate the selected probiotic in vitro properties of Lactobacillus spp. Strains isolated from traditional fermented food. A total 38 strains were isolated from the pickled samples and 14 were identified as Lactobacillus spp. The survival of almost all strains after incubation at pH 2.5 did not change markedly, and remained at above 90 % (109 CFU/mL). The strains also exhibited a high survival rate at pH 3.5 (>90 %), whereas pH 1.5 all were died. Just four strains could survive 90 min. at pH 1.5 (<39 %). The incubation with 0.2 % bile salt solution resulted in a survival rates of 81–94 % after 24 h, whereas after incubation in 2 and 4 % bile salt solution it was 59–94 %. All tested strains showed very good and good resistance to 0.4 % phenol addition, however only Lb. johnsonii K4 was able to multiply. The hydrophobic nature of the cell surface of the tested strains was moderated recording hydrophobicity of Lb. johnsonii K4 and Lb. rhamnosus K3 above 60 %. Safety evaluation excluded four of tested strains as candidate probiotics, according to antibiotic resistance patterns and certain metabolic activities. On the basis on the results 10 of the selected Lactobacillus strains are safe and can survive under gastrointestinal conditions, which requires them to future in vitro and in vivo probiotic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashenafi M, Busse M (1991) Growth of Bacillus cereus in fermenting tempeh made from various beans and its inhibition by Lactobacillus plantarum. J Appl Bacteriol 70:329–333

    Article  CAS  PubMed  Google Scholar 

  2. Axelsson L (2004) Lactic Acid Bacteria: Classification and Physiology. In: Dekker.M (ed) Lactic Acid Bacteria Microbiological and Functional Aspects, 3rd edn, pp.19–85

  3. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701

    Article  CAS  Google Scholar 

  4. Barrangou R, Yoon SS, Breidt F, Fleming HP, Klaenhammer TR (2002) Identification and characterization of Leuconostoc fallax strains isolated from an industrial sauerkraut fermentation. Appl Environ Microbiol 68:2877–2884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  PubMed  Google Scholar 

  6. Botes A, Todorov SD, von Mollendorff JW, Botha A, Dicks LMT (2007) Identification of lactic acid bacteria and yeast from boza. Process Biochem 42:267–270

    Article  CAS  Google Scholar 

  7. Casey P, Casey G, Gardiner G, Tangney M, Stanton C, Ross R, Hill C, Fitzgerald G (2004) Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett Appl Microbiol 39:431–438

    Article  CAS  PubMed  Google Scholar 

  8. Chung KT, Fulk GE, Slein MW (1975) Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J Natl Cancer Inst 554:1073–1078

    Google Scholar 

  9. Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78

    Article  CAS  PubMed  Google Scholar 

  10. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cukrowska B, Motyl I, Kozáková H, Schwarzer M, Górecki RK, Klewicka E, Śliżewska K, Libudzisz Z (2009) Probiotic Lactobacillus strains: in vitro and in vivo studies. Folia Microbiol 54:533–537

    Article  CAS  Google Scholar 

  12. De Smet I, Van Hoorde L, Vande Woestyne M, Christianes H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Microbiol 79:292–301

    Google Scholar 

  13. De Valdez GF, De Giori GS, Garro M, Mozzi F, Oliver G (1990) Lactic acid bacteria from naturally fermented vegetables. Microbiol Aliments Nutr 8:175–179

    Google Scholar 

  14. Del Piano M, Morelli L, Strozzi G, Allesina S, Barba M, Deidda F, Lorenzini P, Ballare M, Montino F, Orsello M, Sartori M, Garello E, Carmagnola S, Pagliarulo M, Capurso L (2006) Probiotics: from research to consumer. Digest Liver Dis 31:248–255

    Article  Google Scholar 

  15. Du Toit M, Franz CMAP, Dicks LMT, Schillinger U, Haberer P, Warlies B, Ahrens F, Holzapfel WH (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH, and faeces moisture content. Int J Food Microbiol 40:93–104

    Article  PubMed  Google Scholar 

  16. EFSA (2008) Technical guidance. update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. prepared by the panel on additives and products or substances used in animal feed. The EFSA J 732:1–15

    Google Scholar 

  17. Enitan A, Adeyemo J, Ogunbanwo ST (2011) Influence of growth conditions and nutritional requirements on the production of hydrogen peroxide by lactic acid bacteria. Afr J Microbiol Res 5:2059–2066

    CAS  Google Scholar 

  18. Ezendam J, van Loveren H (2006) Probiotics: immunomodulation and evaluation of safety and efficacy. Nutr Rev 64:1–14

    Article  PubMed  Google Scholar 

  19. FAO/WHO (2002) Guidelines for the Evaluation of Probiotics in Food. Report a Joint FAO/WHO Working Group, London, pp. 1–11

  20. Franz C, Specht I, Haberer P, Holzapfel WH (2001) Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination. J Food Prot 64:725–729

    CAS  PubMed  Google Scholar 

  21. Gündoğdu AK, Karahan AG, Çakmakçi ML (2005) Production of nitric oxide (NO) by lactic acid bacteria isolated from fermented products. Eur Food Res Technol 223:35–38

    Article  Google Scholar 

  22. He X, Lux R, Kuramitsu HK, Anderson MH, Shi W (2009) Achieving probiotic effects via modulating oral microbial ecology. Adv Dent Res 21:53–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Heavey PM, Rowland IR (2004) Gastrointestinal cancer. Best Pract Res Cl Ga 18:323–336

    Article  Google Scholar 

  24. Hofmann A (1991) Enterohepatic circulation of bile acids. In: Schultz SG, Forte JG, Rauner BB (eds) Handbook of physiology. Section 6: The gastrointestinal system, vol 3, pp 567–580

  25. Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75:197–212

    Article  CAS  PubMed  Google Scholar 

  26. Hoque MZ, Akter F, Hossain KM, Rahman MSM, Billah MM, Islam KMD (2010) Isolation, identification and analysis of probiotic properties of Lactobacillus spp. from selective regional yoghurts. World J Dairy & Food Sci 5:39–46

    Google Scholar 

  27. Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30:949–956

    Article  CAS  PubMed  Google Scholar 

  28. Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 53:216–222

    Article  Google Scholar 

  29. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15:1–9

    Article  CAS  PubMed  Google Scholar 

  30. König H, Fröhlich J (2009) Lactic acid bacteria. Biology of Microorganisms on Grapes. In: Must and in Wine, Springer, Berlin, pp. 3–29

  31. Kumar M, Ghosh M, Ganguli A (2012) Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J Microbiol Biotechnol 28:703–711

    Article  CAS  PubMed  Google Scholar 

  32. Kurman JA (1988) Starters with selected intestinal bacteria. Bulletin IDF 227:41–55

    Google Scholar 

  33. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lee HM, Lee Y (2006) Isolation of Lactobacillus plantarum from kimchi and its inhibitory activity on the adherence and growth of Helicobacter pylori. J Microbiol Biotechnol 16:1513–1517

    Google Scholar 

  35. Lei V, Jakobsen M (2004) Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink. J App Microbiol 96:384–397

    Article  CAS  Google Scholar 

  36. Liu P, Shen S, Ruan H, Zhou Q, Ma L, He G (2011) Production of conjugated linoleic acids by Lactobacillus plantarum strains isolated from naturally fermented Chinese pickles. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 12:923–930

    Article  CAS  Google Scholar 

  37. Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 17:204–210

    Article  CAS  PubMed  Google Scholar 

  38. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH (2004) Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. Int J Food Microbiol 94:269–278

    Article  CAS  PubMed  Google Scholar 

  39. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Guigas C, Franz C, Holzapfel WH (2008) Functional properties of Lactobacillus plantarum strains isolated from maasai traditional fermented milk products in kenya. Curr Microbiol 56:315–321

    Article  CAS  PubMed  Google Scholar 

  40. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin H-K, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional maasai fermented milk products in kenya. Int J Food Microbiol 126:57–64

    Article  CAS  PubMed  Google Scholar 

  41. Moser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67:3476–3480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mourad K, Nour-Eddine K (2006) In vitro preselection criteria for probiotic Lactobacillus plantarum strains of fermented olives origin. Int J Probiotics Prebiotics 1:27

    Google Scholar 

  43. Muyanja CMBK, Narvhus JA, Tremo J, Langsrud T (2003) Isolation, characterisation and identification of lactic acid bacteria from bushera a Ugandan traditional fermented beverage. Int J Food Microbiol 80:201–210

    Article  CAS  PubMed  Google Scholar 

  44. Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J (2011) Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 62:1081–1089

    Article  CAS  PubMed  Google Scholar 

  45. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63:1725–1731

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Pennacchia C, Ercolini D, Blaiotta G, Pepe O, Mauriello G, Villani F (2004) Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci 67:309–317

    Article  CAS  PubMed  Google Scholar 

  47. Pennacchia C, Vaughan EE, Villani F (2006) Potential probiotic Lactobacillus strains from fermented sausages: further investigations on their probiotic properties. Meat Sci 73:90–101

    Article  CAS  PubMed  Google Scholar 

  48. Pérez-Borla O, Davidovich LA, Roura SI (2010) Isolation and characterization of proteolytic microorganisms from fresh and fermented cabbage. Food Sci Technol-Leb 43:298–301

    Article  Google Scholar 

  49. Plengvidhya V, Breidt FZ, Fleming HP (2007) DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73:7697–7702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Psani M, Kotzekidou P (2006) Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol 22:1329–1336

    Article  CAS  Google Scholar 

  51. Ramadan MM, Tantawy EA, Shehata MS (2005) Effect of gamma rays on seed germination and seedling growth of some timber trees. Annals of Agric Sci Moshtohor 43:869–883

    Google Scholar 

  52. Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–672

    Article  PubMed Central  PubMed  Google Scholar 

  53. Reniero R, Cocconcelli P, Bottazzi V, Morelli L (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J Gen Microbiol 138:763–768

    Article  CAS  Google Scholar 

  54. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  PubMed  Google Scholar 

  55. Santosa S, Farnworth E, Jones PJH (2006) Probiotics and their potential health claims. Nutr Rev 64:265–274

    Article  PubMed  Google Scholar 

  56. Schillinger U, Guigas C, Holzapfel W (2005) In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J 15:1289–1297

    Article  CAS  Google Scholar 

  57. Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Cl Ga 17:741–754

    Article  CAS  Google Scholar 

  58. Shin HS, Huang EJ, Park BS, Sakai T (1999) The effects of seed inoculation on the rate of garbage composting. Environ Technol 20:293–300

    Article  CAS  Google Scholar 

  59. Suskovic J, Brkic B, Matosic S, Maric V (1997) Lactobacillus acidophilus M 92 as potential probiotic strain. Milchwissenschaft 52:430–435

    CAS  Google Scholar 

  60. Tamang JP, Tamang B, Schillinger U, Franz C, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the eastern himalayas. Int J Food Microbiol 105:347–356

    Article  CAS  PubMed  Google Scholar 

  61. Tamminen M, Joutsjoki T, Sjöblom M, Joutsen M, Palva A, Ryhänen E-L, Joutsjoki V (2004) Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR–ELISA. Lett Appl Microbiol 39:439–444

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535

    Article  CAS  PubMed  Google Scholar 

  63. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477

    CAS  PubMed  Google Scholar 

  64. Vinderola B, Capellini F, Villarreal S, Viviana QA, Jorge R (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. Food Sci Technol-Leb 41:1678–1688

    Article  CAS  Google Scholar 

  65. Vizoso Pinto M, Franz C, Schillinger U, Holzapfel W (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214

    Article  CAS  PubMed  Google Scholar 

  66. Wang C-Y, Lin P-R, Ng C-C, Shyu Y-T (2010) Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe 16:578–585

    Article  CAS  PubMed  Google Scholar 

  67. Xanthopoulos V, Litopoulou-Tzanetaki E, Tzanetakis N (2000) Characterization of Lactobacillus isolates from infant faeces as dietary adjuncts. Food Microbiol 17:205–215

    Article  Google Scholar 

  68. Xanthopoulos V, Litopoulou-Tzanetaki E, Tzanetakis N (eds) (1997) In vitro study of Lactobacillus species strains on bile tolerance and cholesterol removal. In: Lactic acid bacteria-Lactic 97. Presses Universitaires de Caen, Caen

  69. Xiong T, Song S, Huang X, Feng C, Liu G, Huang J, Xie M (2013) Screening and identification of functional Lactobacillus specific for vegetable fermentation. J Food Sci 78:84–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Zielińska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zielińska, D., Rzepkowska, A., Radawska, A. et al. In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Curr Microbiol 70, 183–194 (2015). https://doi.org/10.1007/s00284-014-0699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0699-0

Keywords

Navigation