Skip to main content
Log in

Acid Resistance Contributes to the High-Pressure Carbon Dioxide Resistance of Escherichia coli K-12

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Effect of deletion of acid resistant genes of E. coli on the high-pressure carbon dioxide (HPC) resistance was investigated. Genes coding amino acid decarboxylases, such as lysine, arginine, and glutamate decarboxylase, were found to contribute to HPC resistance. Protonophore-treated cells showed hypersensitivity to HPC, confirming that HPC induced cytoplasm acidification and exerted severe damage on cells by intrusion of gaseous carbon dioxide into cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213

    Article  CAS  PubMed  Google Scholar 

  2. Castanie´-Cornet, MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    PubMed Central  PubMed  Google Scholar 

  3. Castanié-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C (2010) Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 38:3546–3554

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:71–99

    Article  Google Scholar 

  5. De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211

    Article  PubMed  Google Scholar 

  6. Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R (1999) Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci USA. 96:10344–10348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Erkmen O (2001) Effect of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int J Food Microbiol 65:131–135

    Article  CAS  PubMed  Google Scholar 

  8. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nature Rev Microbiol 2:898–907

    Article  CAS  Google Scholar 

  9. Furukawa S, Watanabe T, Tai T, Hirata J, Ogihara H, Yamasaki M (2003) Effect of high pressure gaseous and supercritical carbon dioxide treatments on the bacterial spores. Biocontrol Sci 8:97–100

    Article  Google Scholar 

  10. Furukawa S, Watanabe T, Tai T, Hirata J, Narisawa N, Kawarai T, Ogihara H, Yamasaki M (2004) Effect of high pressure gaseous carbon dioxide on the germination of bacterial spores. Int J Food Microbiol 91:209–213

    Article  CAS  PubMed  Google Scholar 

  11. Furukawa S, Watanabe T, Koyama T, Hiratal J, Narisawa N, Ogihara H, Yamasaki M (2009) Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control 20:53–58

    Article  CAS  Google Scholar 

  12. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int J Food Microbiol 117:1–28

    Article  CAS  PubMed  Google Scholar 

  13. Ishikawa H, Shimoda M, Shiratsuchi H, Osajima Y (1995) Sterilization of microorganisms by the supercritical carbon dioxide micro-bubble method. Biosci Biotechnol Biochem 59:1949–1950

    Article  CAS  PubMed  Google Scholar 

  14. Knorr D, Heinz V (2001) Development of nonthermal methods for microbial control. In: Block SS (ed) Disinfection, sterilization, and preservation. Lea & Febiger, London, pp 853–877

    Google Scholar 

  15. Lee JH, Lennon CW, Ross W, Gourse RL (2012) Role of the coiled-coil tip of Escherichia coli DksA in promoter control. J Mol Biol 416:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nakamura K, Enomoto A, Fukuhisa H, Nagai K, Hakoda M (1994) Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide. Biosci Biotechnol Biochem 58:1297–1301

    Article  CAS  Google Scholar 

  17. Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL (2004) DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311–322

    Article  CAS  PubMed  Google Scholar 

  18. Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG (2004) Regulation through the secondary channel-structural framework for ppGpp-DksA synergism during transcription. Cell 118:297–309

    Article  CAS  PubMed  Google Scholar 

  19. Sharma UK, Chatterji D (2010) Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiol Rev 34:646–657

    CAS  PubMed  Google Scholar 

  20. Shimoda M, Yamamoto Y, Cocunubo-Castellanos J, Tonoike H, Kawano T, Ishikawa H, Osajima Y (1998) Antimicrobial Effects of Pressured Carbon Dioxide in a Continuous Flow System. J Food Sci 63:709–712

    Article  CAS  Google Scholar 

  21. Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11:100–105

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe T, Furukawa S, Hirata J, Koyama T, Ogihara H, Yamasaki M (2003) Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Appl Environ Microbiol 69:7124–7129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Watanabe T, Furukawa S, Tai T, Hirata J, Narisawa N, Ogihara H, Yamasaki M (2003) High pressure carbon dioxide decreases the heat tolerance of the bacterial spores. Food Sci. Technol. Res. 9:342–344

    Article  Google Scholar 

  24. Watanabe T, Furukawa S, Kitamoto K, Takatsuki A, Hirata R, Ogihara H, Yamasaki M (2005) Vacuolar H+-ATPase and plasma membrane H+-ATPase contribute to the tolerance against high-pressure carbon dioxide treatment in Saccharomyces cerevisiae. Int J Food Microbiol 105:131–137

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe T, Furukawa S, Kawarai T, Wachi M, Ogihara H, Yamasaki M (2007) Cytoplasmic acidification may occur in high-pressure carbon dioxide-treated Escherichia coli K12. Biosci Biotechnol Biochem 71:2522–2526

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H (1997) The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72:167–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Institute of Genetics (Shizuoka) and National BioResource Project (NIG, Japan): E. coli for giving us the E. coli strains and plasmids used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soichi Furukawa, Makari Yamasaki or Yasushi Morinaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, S., Shimazaki, J., Kawaharada, K. et al. Acid Resistance Contributes to the High-Pressure Carbon Dioxide Resistance of Escherichia coli K-12. Curr Microbiol 70, 1–5 (2015). https://doi.org/10.1007/s00284-014-0674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0674-9

Keywords

Navigation