Skip to main content
Log in

Pectin Induces an In Vitro Rumen Microbial Population Shift Attributed to the Pectinolytic Treponema Group

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pectin is a non-fiber carbohydrate (NFC) that exists in forages, but it is not clear how pectin exerts its effect on populations of either known microbial species or uncultured ruminal bacteria. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR analysis were used in the present study to investigate the effects of pectin on microbial communities in an in vitro rumen fermentation system. The fermentations were conducted using forage (corn stover or alfalfa), an NFC source (pectin or corn starch), or their combination as the substrates. Addition of pectin increased acetate (P < 0.05), whereas inclusion of starch increased butyrate production (P < 0.05). The pectate lyase activity was higher with alfalfa than with corn straw, or with pectin than with corn starch (P < 0.05), while the amylase activity was higher in corn starch-included treatments than the others (P < 0.05). The cluster analysis of the bacterial 16S rRNA gene showed that the DGGE banding patterns differed significantly between the treatments and led to the identification of three groups that were highly associated with the NFC sources. The specific bands associated with pectin-rich treatments were identified to be dominated by members of the Treponema genus. The growth of the Treponema genus was remarkably supported by the inclusion of pectin, highlighting their specific ability to degrade pectin. The results from the present study expand our knowledge of the microbial populations associated with pectin digestion, which may not only facilitate future research on utilization of pectin in feeds, but also improve our understanding of pectin digestion with respect to the rumen micro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  2. Ariza P, Bach A, Stern MD et al (2001) Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J Anim Sci 79(10):2713–2718

    CAS  PubMed  Google Scholar 

  3. Bekele AZ, Koike S, Kobayashi Y (2011) Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiol Lett 316(1):51–60

    Article  CAS  PubMed  Google Scholar 

  4. Cai SC, Li JB, Hu FZ et al (2010) Cellulosilyticum ruminicola a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolytic enzymes. Appl Environ Microbiol 76:3818–3824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen Y, Penner GB, Li M et al (2011) Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl Environ Microbiol 77(16):5770–5781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58(3):572–582

    Article  CAS  PubMed  Google Scholar 

  7. Dice LR (1945) Measures of the Amount of Ecologic Association Between Species. Ecology 26(3):297–302

    Article  Google Scholar 

  8. Dušková D, Marounek M (2001) Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett App Microbiol 33(2):159–163

    Article  Google Scholar 

  9. Fondevila M, Dehority BA (1994) Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. J Appl Bacteriol 77(5):541–548

    Article  CAS  PubMed  Google Scholar 

  10. Gradel CM, Dehority BA (1972) Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Appl Microbiol 23(2):332–340

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hall MB, Larson CC, Wilcox CJ (2010) Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J Dairy Sci 93(1):311–322

    Article  CAS  PubMed  Google Scholar 

  12. Hu W-L, Liu J-X, Ye J-A et al (2005) Effect of tea saponin on rumen fermentation in vitro. Anim Feed Sci Technol 120(3):333–339

    Article  CAS  Google Scholar 

  13. Huws SA, Lee MRF, Muetzel SM et al (2010) Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol Lett 73(2):396–407

    CAS  Google Scholar 

  14. Kasperowicz A (1993) Comparison of utilization of pectins from various sources by pure cultures of pectinolytic rumen bacteria and mixed cultures of rumen microorganisms. Acta Microbiol Polonica 43(1):47–56

    Google Scholar 

  15. Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the Rumen Bacterial Diversity under two Different Diet Conditions using Denaturing Gradient Gel Electrophoresis, Random Sequencing, and Statistical Ecology Approaches. Anaerobe 7(3):119–134

    Article  CAS  Google Scholar 

  16. Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204(2):361–366

    Article  CAS  PubMed  Google Scholar 

  17. Koike S, Yabuki H, Kobayashi Y (2007) Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim Sci J 78(2):135–141

    Article  CAS  Google Scholar 

  18. Liu J, Wang J-K, Zhu W et al (2013) Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR. FEMS Microbiol Ecol 87(3):576–585

    Article  PubMed  Google Scholar 

  19. Marounek M, Dušková D (1999) Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett Appl Microbiol 29(6):429–433

    Article  CAS  Google Scholar 

  20. Marounek M, Bartos S, Brezina P (1985) Factors Influencing the Production of Volatile Fatty Acids from Hemicellulose, Pectin and Starch by Mixed Culture of Rumen Microorganisms. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 53(1–5):50–58

    CAS  Google Scholar 

  21. Mertens DR (2002) Nutritional implications of fiber and carbohydrate characteristics of corn silage and alfalfa hay. California Animal Nutrition Conf Fresno, CA:94–107

  22. Mullen CA, Boateng AA, Goldberg NM et al (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 34(1):67–74

    Article  CAS  Google Scholar 

  23. Paster BJ, Canale-Parola E (1985) Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl Environ Microbiol 50(2):212–219

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Paster BJ, Dewhirst FE, Weisburg WG et al (1991) Phylogenetic analysis of the spirochetes. J Bacteriol 173(19):6101–6109

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Piknova M, Guczynska W, Miltko R et al (2008) Treponema zioleckii sp. nov., a novel fructan-utilizing species of rumen treponemes. FEMS Microbiol Lett 289(2):166–172

    Article  CAS  PubMed  Google Scholar 

  26. Poulsen M, Jensen BB, Engberg RM (2012) The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Anaerobe 18(1):83–90

    Article  CAS  PubMed  Google Scholar 

  27. SAS Institute (2000) SAS User’s Guide: Statistics. Version 8.01. SAS Inst. Inc., Cary, NC

  28. Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127:145–156

    Article  CAS  PubMed  Google Scholar 

  29. Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75(1):165–174

    Article  CAS  PubMed  Google Scholar 

  30. Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Blackie Academic & Professional, London, pp 10–72

    Chapter  Google Scholar 

  31. Tajima K, Aminov RI, Nagamine T et al (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67(6):2766–2774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Theodorou MK, Williamsa BA, Dhanoaa MS et al (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48(3–4):185–197

    Article  Google Scholar 

  33. Van Soest PJ (1995) What constitutes alfalfa quality: New considerations. In: Proceedings of the 25th Natl Alfalfa Symposium, Liverpool, NY:1–15

  34. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44(3):253–262

    Article  CAS  PubMed  Google Scholar 

  35. Wojciechowicz M (1970) Partial characterization of pectinolytic enzymes of Bacteroides ruminicola isolated from the rumen of a sheep. Acta Microbiol Polonica Series A 3(1):45–56

    Google Scholar 

  36. Wojciechowicz M, Ziołecki A (1979) Pectinolytic enzymes of large rumen treponemes. Appl Environ Microbiol 37(1):136–142

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Xiao Z, Storms R, Tsang A (2006) A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem 351(1):146–148

    Article  CAS  PubMed  Google Scholar 

  38. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36(5):808–812

    CAS  PubMed  Google Scholar 

  39. Yuan P, Meng K, Wang Y et al (2012) Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. PLoS ONE 7(7):e40940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang C, Guo Y, Yuan Z et al (2008) Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim Feed Sci Technol 146(3):259–269

    Article  CAS  Google Scholar 

  41. Zhu W, Fu Y, Wang B et al (2013) Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. J Dairy Sci 96:1727–1734

    Article  CAS  PubMed  Google Scholar 

  42. Ziołecki A (1979) Isolation and characterization of large treponemes from the bovine rumen. Appl Environ Microbiol 37(1):131–135

    PubMed Central  PubMed  Google Scholar 

  43. Ziołecki A, Wojciechowicz M (1980) Small pectinolytic spirochetes from the rumen. Appl Environ Microbiol 39(4):919–922

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grants from the National Basic Research Program of China Ministry of Science and Technology (Grant No. 2011CB100801). The authors are thankful to Dr. Chris McSweeney at CSIRO Livestock Industries, Australia, for donating the pure rumen bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Kun Wang or Jian-Xin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Pu, YY., Xie, Q. et al. Pectin Induces an In Vitro Rumen Microbial Population Shift Attributed to the Pectinolytic Treponema Group. Curr Microbiol 70, 67–74 (2015). https://doi.org/10.1007/s00284-014-0672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0672-y

Keywords

Navigation