Skip to main content
Log in

Exploring N-Acylhydrazone Derivatives Against Clinical Resistant Bacterial Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacterial multiresistance is a health problem worldwide that demands new antimicrobials for treating bacterial-related infections. In this study, we evaluated the antimicrobial activity and the theoretical toxicology profile of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazide derivatives against gram-positive and gram-negative bacteria clinical strains. On that purpose we determined the minimum inhibitory (MIC) and bactericidal (MBC) concentrations, the in vitro cytotoxicity, and in silico risk profiles, also comparing with antimicrobial agents of clinical use. Among the 16 derivatives analyzed, four nitrofurans (N–H–FUR–NO2, N–Br–FUR–NO2, N–F–FUR–NO2, N–Cl–FUR–NO2) showed promising MIC and MBC values (MIC = MBC = 1–16 μg/mL). The experimental data revealed the potential of these derivatives, which were comparable to the current antimicrobials with similar bactericidal and bacteriostatic profiles. Therefore, these molecules may be feasible options to be explored for treating infections caused by multiresistant strains. Our in vitro and in silico toxicity reinforced these results as these derivatives presented low cytotoxicity against human macrophages and low theoretical risk profile for irritant and reproductive effects compared to the current antimicrobials (e.g., vancomycin and ciprofloxacin). The molecular modeling analysis also revealed positive values for their theoretical druglikeness and drugscore. The presence of a 5-nitro-2-furfur-2-yl group seems to be essential for the antimicrobial activity, which pointed these acylhydrazone derivatives as promising for designing more potent and safer compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  PubMed  Google Scholar 

  2. Angebault C, Andremont A (2013) Antimicrobial agent exposure and the emergence and spread of resistant microorganisms: issues associated with study design. Eur J Clin Microbiol Infect Dis 32:581–595

    Article  CAS  PubMed  Google Scholar 

  3. Chung MC, Bosquesi PL, dos Santos JL (2011) A prodrug approach to improve the physico-chemical properties and decrease the genotoxicity of nitro compounds. Curr Pharm Des 17:3515–3526

    Article  CAS  PubMed  Google Scholar 

  4. CLSI (2013) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement, 1st ed. Clinical & Laboratory Standards Institute

  5. Desai S, Laddi U, Bennur R, Bennur S (2013) Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Indian J Chem 52:1176–1181

    Google Scholar 

  6. Freitas C, Fonseca A, Zanon U, Neves J (1987) Aspectos genéticos bioquímicos da resistência bacteriana aos antibióticos. J Infecções Hosp Prevenccão Diagnóstico E Trat Rio Jan MEDSI 207:49

    Google Scholar 

  7. Gonzalez N, Sevillano D, Alou L, Cafini F, Gimenez MJ, Gomez-Lus ML, Prieto J, Aguilar L (2013) Influence of the MBC/MIC ratio on the antibacterial activity of vancomycin versus linezolid against methicillin-resistant Staphylococcus aureus isolates in a pharmacodynamic model simulating serum and soft tissue interstitial fluid concentrations reported in diabetic patients. J Antimicrob Chemother 68:2291–2295

    Article  CAS  PubMed  Google Scholar 

  8. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587

    Article  PubMed  Google Scholar 

  9. Guimarães DO, da Momesso LS, Pupo MT (2010) Antibiotics: therapeutic importance and perspectives for the discovery and development of new agents. Quím Nova 33:667–679

    Article  Google Scholar 

  10. Gu W, Wu R, Qi S, Gu C, Si F, Chen Z (2012) Synthesis and antibacterial evaluation of new N-acylhydrazone derivatives from dehydroabietic acid. Molecules 17:4634–4650

    Article  CAS  PubMed  Google Scholar 

  11. Hou T, Wang J, Zhang W, Xu X (2007) ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 47:208–218

    Article  CAS  PubMed  Google Scholar 

  12. Jordão AK, Sathler PC, Ferreira VF, Campos VR, de Souza MCBV, Castro HC, Lannes A, Lourenco A, Rodrigues CR, Bello ML, Lourenco MCS, Carvalho GSL, Almeida MCB, Cunha AC (2011) Synthesis, antitubercular activity, and SAR study of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 19:5605–5611

    Article  PubMed  Google Scholar 

  13. Jordão AK, Afonso PP, Ferreira VF, de Souza MCBV, Almeida MCB, Beltrame CO, Paiva DP, Wardell SMSV, Wardell JL, Tiekink ERT, Damaso CR, Cunha AC (2009) Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. Eur J Med Chem 44:3777–3783

    Article  PubMed  Google Scholar 

  14. Jordão AK, Ferreira VF, Lima ES, de Souza MC, Carlos EC, Castro HC, Geraldo RB, Rodrigues CR, Almeida MC, Cunha AC (2009) Synthesis, antiplatelet and in silico evaluations of novel N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg Med Chem 17:3713–3719

    Article  PubMed  Google Scholar 

  15. Krasner RI, Shors T (2013) The microbial challenge: a public health perspective. Jones & Bartlett Publishers, New York

    Google Scholar 

  16. Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Júnior NG, de Cândido ES, Dias SC, Franco OL (2013) Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 27:1291–1303

    Article  CAS  PubMed  Google Scholar 

  17. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  18. Lourenço AL, Abreu PA, Leal B, da Silva Júnior EN, Pinto AV, do Pinto MCFR, Souza AMT, Novais JS, Paiva MB, Cabral LM, Rodrigues CR, Ferreira VF, Castro HC (2011) Identification of nor-β-lapachone derivatives as potential antibacterial compounds against Enterococcus faecalis clinical strain. Curr Microbiol 62:684–689

    Article  PubMed  Google Scholar 

  19. O’Connell KMG, Hodgkinson JT, Sore HF, Welch M, Salmond GPC, Spring DR (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int 52:10706–10733

    Article  Google Scholar 

  20. Oliveira GA, Okada SS, Guenta RS, Mamizuka EM (2001) Evaluation of the tolerance to vancomycin in 395 oxacillin-resistant Staphylococcus aureus strains isolated from Brazilian hospitals. J Bras Patol E Med Lab 37:239–246

    CAS  Google Scholar 

  21. Palmer AC (2013) Gene-drug interactions and the evolution of antibiotic resistance. http://dash.harvard.edu/handle/1/10436292. Accessed 01 Dec 2013

  22. Patrick GL (2013) An introduction to medicinal chemistry. Oxford University Press, Oxford

    Google Scholar 

  23. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  PubMed  Google Scholar 

  24. McArthur MG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O'Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357

  25. Pinheiro LC, Abreu PA, Afonso IF, Leal B, Corrêa LC, Borges JC, Marques IP, Lourenço AL, Sathler P, dos Santos AL (2008) Identification of a potential lead structure for designing new antimicrobials to treat infections caused by Staphylococcus epidermidis-resistant strains. Curr Microbiol 57:463–468

    Article  CAS  PubMed  Google Scholar 

  26. Quillardet P, Arrault X, Michel V, Touati E (2006) Organ-targeted mutagenicity of nitrofurantoin in Big Blue transgenic mice. Mutagenesis 21:305–311

    Article  CAS  PubMed  Google Scholar 

  27. Quintiliani R, Quintiliani RJr (2008) Pharmacokinetics/Pharmacodynamics for critical care clinicians. Crit Care Clin 24:335–348

    Article  CAS  PubMed  Google Scholar 

  28. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500

    Article  PubMed  Google Scholar 

  29. Santos DO, Lorré K, de Boer M, Van Heuverswyn H (1999) Shedding of soluble receptor for tumor necrosis factor alpha induced by M. leprae or LPS from human mononuclear cells. Nihon Hansen Gakkai Zasshi Jpn J Lepr Off Organ Jpn Lepr Assoc. 68:185–193

    CAS  Google Scholar 

  30. Skolimowski IM, Knight RC, Edwards DI (1983) Molecular basis of chloramphenicol and thiamphenicol toxicity to DNA in vitro. J Antimicrob Chemother 12:535–542

    Article  CAS  PubMed  Google Scholar 

  31. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am 46:155–164

    Article  Google Scholar 

  32. Tato M, López Y, Morosini MI, Moreno-Bofarull A, Garcia-Alonso F, Gargallo-Viola D, Vila J, Cantón R (2014) Characterization of variables that may influence ozenoxacin in susceptibility testing, including MIC and MBC values. Diagn Microbiol Infect Dis 78:263–267

  33. Turton JA, Havard AC, Robinson S, Holt DE, Andrews CM, Fagg R, Williams TC (2000) An assessment of chloramphenicol and thiamphenicol in the induction of aplastic anaemia in the BALB/c mouse. Food Chem Toxicol 38:925–938

    Article  CAS  PubMed  Google Scholar 

  34. Viodé C, Bettache N, Cenas N, Krauth-Siegel RL, Chauvière G, Bakalara N, Périé J (1999) Enzymatic reduction studies of nitroheterocycles. Biochem Pharmacol 57:549–557

    Article  PubMed  Google Scholar 

  35. Walsh C (ed) (2003) Antibiotics: actions, origins, resistance. American Society for Microbiology (ASM), Washington DC

    Google Scholar 

  36. WHO (2013) Antimicrobial resistance. http://www.who.int/mediacenter/factsheets/fs194/en. Accessed 19 Sep 2013

  37. Paulai FR, Serrano SHP, Tavares LC (2009) Aspects of bioactivity and toxicity of nitrocompounds. Quim Nova 32:1013–1020

    Article  Google Scholar 

Download references

Acknowledgments

We thank the support of Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal Docente (CAPES), and Pro-reitoria de Pesquisa e Inovação da Universidade Federal Fluminense (PROPPi-UFF) for the financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena C. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lannes, A.C., Leal, B., Novais, J.S. et al. Exploring N-Acylhydrazone Derivatives Against Clinical Resistant Bacterial Strains. Curr Microbiol 69, 357–364 (2014). https://doi.org/10.1007/s00284-014-0591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0591-y

Keywords

Navigation