Skip to main content
Log in

Niabella thaonhiensis sp. nov., Isolated From the Forest Soil of Kyonggi University in Korea

  • Published:
Current Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2014

Abstract

Strain NHI-24T was isolated from forest soil by a polycarbonate membrane transwell plate. It is a Gram-negative, rod-shaped, non-motile, non-spore-forming bacterium. Phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain NHI-24T is closely related to members of the genus Niabella: N. drilacis E90T (97.7 %), N. tibetensis 15-4T (96.7 %), N. aurantiaca R2A15-11T (96.5 %), N. hirudinis E96T (95.8 %), N. soli JS13-8T (94.7 %), N. ginsengisoli NBRC106414T (94.4 %), and N. yanshanensis CCBAU 05354T (94.2 %). Growth temperatures range widely, from 15 to 37 °C, with 30 °C as the optimum. Salt tolerance ranges from 0 to 2 %. The strain grows at pH 6.5–11.0, with an optimal range of pH 7.0–9.5. Cells produce flexirubin-type pigments, and the predominant menaquinone is MK-7. The major fatty acids of strain NHI-24T are iso-C15:0 (36.72 %), iso-C15:1 G (20.8 %), and summed feature 3 (C16:1 ω7c/C16:1 ω6c; 15.2 %). DNA–DNA hybridization values between strain NHI-24T and members of the genus Niabella range from 37 to 53 %. Based on these results, it is proposed that strain NHI-24T represents a novel species of the genus Niabella with the name Niabella thaonhiensis (= KACC 17215T = KEMB 9005-018T = JCM 18864T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dai J, Jiang F, Wang Y et al (2011) Niabella tibetensis sp. nov., isolated from soil, and emended description of the genus Niabella. Int J Syst Evol Bacteriol 61:1201–1205

    Article  CAS  Google Scholar 

  2. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 221–233

    Google Scholar 

  3. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  4. Glaeser PS (2013) Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 63(Pt 9):3487–3493. doi:10.1099/ijs.0.050823-0

    Article  CAS  PubMed  Google Scholar 

  5. Hairaishi A, Ueda Y, Ishihara J et al (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  Google Scholar 

  6. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  7. Kim BY, Weon HY, Yoo SH et al (2007) Niabella aurantiaca gen. nov., sp. nov., isolated from a greenhouse soil in Korea. Int J Syst Evol Bacteriol 57:538–541

    Article  CAS  Google Scholar 

  8. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  9. Ludwig W, Euzéby J, Whitman WB (2008) Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi and Gemmatimonadetes. Bergey’s Manual of Systematic Bacteriology, vol. 4, 2nd edn. http://www.bergeys.org/outlines.html

  10. Mehlen A, Goeldner M, Ried S et al (2004) Development of a Fast DNA–DNA hybridization method based on melting profiles in microplates. Syst Appl Microbiol 27:689–695

    Article  CAS  PubMed  Google Scholar 

  11. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  12. Pham THV, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484

    Article  CAS  PubMed  Google Scholar 

  13. Pham THV, Kim J (2013) Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr Microbiol 68(1):88–95. doi:10.1007/s00284-013-0443-1

    Article  PubMed  Google Scholar 

  14. Reichenbach H (1992) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn. Springer, New York, pp 3631–3675

    Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  16. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark

  17. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Woods WA, Krieg NR (eds) Methods for general and molecular bacteriology. Am Soc Microbiol, Washington, pp 607–654

    Google Scholar 

  18. Tamura K, Peterson D, Peterson N et al (2011) Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Thomson JD (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  Google Scholar 

  20. Wang H, Zhang YZ, Man CX et al (2009) Niabella yanshanensis sp. nov., isolated from the soybean rhizosphere. Int J Syst Evol Bacteriol 59:2854–2856

    Article  CAS  Google Scholar 

  21. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  22. Weon HY, Kim BY, Joa JH et al (2008) Niabella soli sp. nov., isolated from soil from Jeju Island, Korea. Int J Syst Evol Bacteriol 58:467–469

    Article  CAS  Google Scholar 

  23. Weon HY, Yoo SH, Kim BY et al (2009) Niabella ginsengisoli sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Bacteriol 59:1282–1285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2011-0010144), and by the GAIA project, funded by the Korea Environmental Industry & Technology Institute and the Korean Ministry of Environment (RE201202062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaisoo Kim.

Additional information

The NCBI GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain NHI-24T is JQ796720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, V.H.T., Kim, J. Niabella thaonhiensis sp. nov., Isolated From the Forest Soil of Kyonggi University in Korea. Curr Microbiol 69, 176–181 (2014). https://doi.org/10.1007/s00284-014-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0565-0

Keywords

Navigation