Skip to main content
Log in

Bacillus thuringiensis Isolates from Great Nicobar Islands

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) strains were isolated from soil samples of Great Nicobar Islands, one of the “hottest biodiversity hotspots,” where no collection has been characterized previously. The 36 new Bt isolates were obtained from 153 samples analyzed by crystal protein production with light/phase-contrast microscopy, determination of cry gene profile by SDS-PAGE, evaluation of toxicity against Coleopteran, and Lepidopteran insect pests, finally cloning and sequencing. Majority of the isolates showed the presence of 66–35 kDa protein bands on SDS-PAGE while the rest showed >130, 130, 73, and 18 kDa bands. The variations in crystal morphology and mass of crystal protein(s) purified from the isolates of Bt revealed genetic and molecular diversity. Based on the toxicity test, 50 % of isolates were toxic to Ash weevils, 16 % isolates were toxic to cotton bollworm, 38 % isolates were toxic both to ash weevil as well as cotton bollworm, while 11 % of the isolates did not exhibit any toxicity. PCR analysis unveiled prepotency of cry1B- and cry8b-like genes in these isolates. This study appoints the first isolation and characterization of local B. thuringiensis isolates in Great Nicobar Islands. Some of these isolates display toxic potential and, therefore, could be adopted for future applications to control some agriculturally important insect pests in the area of integrated pest management for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aronson AI, Fritz-James P (1976) Structures and morphogenesis of the bacterial pore coat. Bacteriol Rev 40:360–402

    PubMed  CAS  Google Scholar 

  2. Arrieta G, Hernandez A, Espinoza AM (2004) Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei. Rev Biol Trop 52(3):757–764

    PubMed  Google Scholar 

  3. Bel Y, Granero F, Alberola TM, Martinez-Sebastian MJ, Ferre J (1997) Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Syst Appl Microbiol 20:652–658

    Article  Google Scholar 

  4. Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sınal R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    PubMed  CAS  Google Scholar 

  5. Bernhard K, Jarrett P, Meadows M, Butt J, Ellis J, Roberts GM, Pauli S, Rodgers P, Burges HD (1997) Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization and activity against insect pests. J Invertebr Pathol 70:59–68

    Article  Google Scholar 

  6. Bourque SN, Valero JR, Mercier J, Lavoie MC, Levesque RC (1993) Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl Environ Microbiol 59:523–527

    PubMed  CAS  Google Scholar 

  7. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos V, Pena G, Nunez-Valdez M, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    PubMed  CAS  Google Scholar 

  8. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  PubMed  CAS  Google Scholar 

  9. Ceron J, Covarrubias L, Quintero R, Ortiz A, Ortiz M, Aranda E, Lina L, Bravo A (1994) PCR analysis of the cry1 insecticidal crystal family genes from Bacillus thuringiensis. Appl Environ Microbiol 60:353–356

    PubMed  CAS  Google Scholar 

  10. Chak KF, Chao DC, Tseng MY, Kao SS, Tuan SJ, Feng TY (1994) Determination and distribution of cry-type genes of Bacillus thuringiensis isolates from Taiwan. Appl Environ Microbiol 60:2415–2420

    PubMed  CAS  Google Scholar 

  11. Dubois NR, Dean DH (1995) Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environ Entomol 24:1741–1747

    Google Scholar 

  12. Federici BA, Lüthy P, Ibarra JE (1990) The parasporal body of Bacillus thuringiensis subsp. israelensis: structure, protein composition and toxicity. In: de Barjac, Sutherland S (eds) Bacterial control of mosquitos and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis and Bacillus sphaericus. Rutgers University Press, New Brunswick

  13. Forsyth G, Logan NA (2000) Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Lett Appl Microbiol 30:263–266

    Article  PubMed  CAS  Google Scholar 

  14. George Z, Crickmore N (2012) Bacillus thuringiensis applications in Agriculture. In: Sansinenea E (ed.) Bacillus thuringiensis Biotechnology, pp 1–22. doi: 10.1007/978-94-007-3021-2_2

  15. Hernstand C, Soares GG, Wilcox ER, Edwards DI (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Biotechnology 4:305–308

    Article  Google Scholar 

  16. Hongyu Z, Ziniu Y, Wangxi D (2000) Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China. Crop Protect 19:449–454

    Article  Google Scholar 

  17. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  18. Iriarte J, Porcar M, Lecadet MM, Caballero P (2000) Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr Microbiol 40:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Johnson D, Oppert Brenda, McGaughey William H (1998) Spore coat protein synergizes BT crystal toxicity for the Indianmeal moth Plodia interpunctella. Curr Microbiol 36:278–282

    Article  PubMed  Google Scholar 

  20. Kalmykova G, Burtseva Ljudmila, Milne Ross, van Frankenhuyzen Kees (2009) Activity of spores and extracellular proteins from six Cry + strains and a Cry− strain of Bacillus thuringiensis subsp. kurstaki against the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can J Microbiol 55:536–543

    Article  PubMed  CAS  Google Scholar 

  21. Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis: Ein neuer, gegenüber Glarven von Coleoptaran Wirksamer Pathotype. Z Angew Entomol 96:500–508

    Article  Google Scholar 

  22. Lereclus D, Delecluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) BT, an environmental biopesticide: theory and Practice. Wiley, Chichester, pp 37–69

    Google Scholar 

  23. Maeda M, Mizuki E, Nakamura Y, Hatano T, Ohba M (2000) Recovery of Bacillus thuringiensis from marine sediments of Japan. Curr Microbiol 40:413–422

    Google Scholar 

  24. Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    PubMed  CAS  Google Scholar 

  25. Meadows MP, Ellis DJ, Butt J, Jarrett P, Burges D (1992) Distribution, frequency and diversity of Bacillus thuringiensis in an animal feed mill. Appl Environ Microbiol 58:1344–1350

    PubMed  CAS  Google Scholar 

  26. Mizuki E, Ichimatsu T, Hwang SH, Park YS, Saitoh H, Higuchi K, Ohba M (1999) Ubiquity of Bacillus thuringiensis on phylloplanes of arboreous and herbaceous plants in Japan. J Appl Microbiol 86:979–984

    Article  Google Scholar 

  27. Nazarian A, Jahangiri R, Jouzani GS, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 102:101–109

    Article  PubMed  CAS  Google Scholar 

  28. Ohba M, Aizawai K (1986) Distribution of Bacillus thuringiensis in soils of Japan. J Invertebr Pathol 47:277–282

    Article  Google Scholar 

  29. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  30. Sanchis V, Chaufaux J, Lereclus D (1996) AmeÂlioration biotechnologique de Bacillus thuringiensis: les enjeux et les risques. Ann de l’Institut Pasteur/ActualiteÂs 7:271–284

    Article  Google Scholar 

  31. Theunis W, Aguda RM, Cruz WT, Decock C, Peferoen M, Lambert B, Bottrell DG, Gould FL, Litsinger JA, Cohen MB (1998) Bacillus thuringiensis isolates from the Philippines: habitat distribution, δ-endotoxin diversity and toxicity to rice stem borers (Lepidoptera: Pyralidae). Bull Entomol Res 88:335–342

    Article  CAS  Google Scholar 

  32. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    PubMed  CAS  Google Scholar 

  33. Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  Google Scholar 

  34. Xavier R, Nagarathinam P, Murugan V (2007) Isolation of lepidopteran active native Bacillus thuringiensis strains through PCR panning. Asia Pac J Mol Biol Biotechnol 15:61–67

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to ICAR, New Delhi for funding this study under Network project on Application of Microbes in Agriculture and Allied Sectors (AMAAS). Infrastructure facility and encouragement by The Director, Indian Institute of Horticultural Research (IIHR) are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Asokan or H. M. Mahadeva Swamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asokan, R., Mahadeva Swamy, H.M., Birah, A. et al. Bacillus thuringiensis Isolates from Great Nicobar Islands. Curr Microbiol 66, 621–626 (2013). https://doi.org/10.1007/s00284-013-0323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0323-8

Keywords

Navigation