Skip to main content
Log in

AppA C-terminal Plays an Important Role in its Thermostability in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Due to our previous research, mainly the thermostable mutants Q307D, Y311K, and I427L, we conjectured that Escherichia coli AppA phytase’s C-terminal plays an important role in its thermostability, and AppA begins to collapse from the C-terminal when at a higher temperature. So here we constructed C-lose mutant to prove it. The residual activities of the wild-type AppA phytase and C-lose were 31.42 and 70.49 %, respectively, after being heated at 80 °C for 10 min. The C-terminal deletion mutant C-lose showed 39.07 % thermostability enhancement than the wild-type both without the pH and temperature optimum changed. It proved the C-lose plays a key role in E. coli AppA phytase’s thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eijsink VG, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  PubMed  CAS  Google Scholar 

  2. Garrett JB, Kretz KA, Donoghue EO, Kerovuo J, Kim W, Barton NR, Hazlewood GP, Short JM, Robertson DE, Gray KA (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric feed supplement. Appl Environ Microbiol 70(5):3041–3046

    Article  PubMed  CAS  Google Scholar 

  3. Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68(5):588–597

    Article  PubMed  CAS  Google Scholar 

  4. Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  PubMed  CAS  Google Scholar 

  5. Han YM, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    PubMed  CAS  Google Scholar 

  6. Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase App A2 by error-prone PCR. Appl Microbiol Biotechnol 79(1):69–75

    Article  PubMed  CAS  Google Scholar 

  7. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  PubMed  CAS  Google Scholar 

  8. Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57(4):474–481

    Article  PubMed  CAS  Google Scholar 

  9. Lim D, Golovan S, Forsberg CW, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7(2):108–113

    Article  PubMed  CAS  Google Scholar 

  10. Luo H, Huang H, Yang P, Wang Y, Yuan T, Wu N, Yao B, Fan Y (2007) A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr Microbiol 55(3):185–192

    Article  PubMed  CAS  Google Scholar 

  11. Pack SP, Yoo YJ (2003) Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. J Mol Catal B Enzym 26:257–264

    Article  CAS  Google Scholar 

  12. Querol E, Perez-Pons JA, Mozo-Villarias A (1996) Analysis of protein conformational characteristics related to thermostability. Protein Eng 9:265–271

    Article  PubMed  CAS  Google Scholar 

  13. Ragone R (2001) Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction. Protein Sci 10:2075–2082

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112

    Article  PubMed  CAS  Google Scholar 

  15. Selle PH, Aaron J, Cowieson AJ, Ravindran V (2009) Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Sci 124(1–3):126–141

    Article  Google Scholar 

  16. Szilágyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 15:493–504

    Article  Google Scholar 

  17. Vieille C, Zeikus JG (1996) Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol 14:183–190

    Article  CAS  Google Scholar 

  18. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  19. Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon AP (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65(2):367–373

    PubMed  CAS  Google Scholar 

  20. Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158

    Article  PubMed  CAS  Google Scholar 

  21. Zhu W, Qiao D, Huang M, Yang G, Xu H, Cao Y (2010) Modifying thermostability of appA from Escherichia coli. Curr Microbiol 61(4):267–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Funds Committee (31272659, 30971817), and National twelfth five-year science and technology support program (2011BAD14B05), Sichuan Science and Technology Bureau (2010GZ0290, 2012GZ0008, 2010GZ0065, 2011GZ0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojin Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, B., Cao, Y., Xu, H. et al. AppA C-terminal Plays an Important Role in its Thermostability in Escherichia coli . Curr Microbiol 66, 374–378 (2013). https://doi.org/10.1007/s00284-012-0283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0283-4

Keywords

Navigation