Skip to main content

Advertisement

Log in

The Expression of ABC Efflux Pump, Rv1217c–Rv1218c, and Its Association with Multidrug Resistance of Mycobacterium tuberculosis in China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Currently the treatment of Mycobacterium tuberculosis (TB) infection is largely limited due to the prevalence of multidrug resistance strains. Over-expressing the efflux pumps such as the ATP-binding cassette (ABC) transporter has been reported to significantly contribute to its resistance to several antibiotics. This study investigated the expression profile of one important ABC efflux pump, Rv1217c–Rv1218c, by quantitative real-time PCR (RT-qPCR) in clinical isolates from China, which also revealed its association with the multidrug resistance of M. tuberculosis. Significantly increased expressions of Rv1217c and Rv1218c at transcriptional level have been observed in multidrug-resistant TB group (MDR-TB) compared to those of the drug-susceptible group (P < 0.05), when H37Rv strain was used as the control. Furthermore, correlation analysis revealed that the over-expression of both Rv1217c and Rv1218c resulted in the higher minimum inhibition concentrations (MICs) of rifampicin (RIF) (OR = 1.01, P < 0.05 of Rv1217c; OR = 1.23, P < 0.05 of Rv1218c), while the over-expression of Rv1218c only led to the higher MICs of isoniazid (INH) (OR = 1.17, P < 0.05). Our findings contributed to the better understanding of the molecular mechanisms of ABC efflux pumps, in particular Rv1217c–Rv1218c, in M. tuberculosis and will assist in developing new antibiotic treatments for multidrug-resistant M. tuberculosis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651

    Article  PubMed  CAS  Google Scholar 

  2. Balganesh M, Kuruppath S, Marcel N, Sharma S, Nair A, Sharma U (2010) Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 54:5167–5172

    Article  PubMed  CAS  Google Scholar 

  3. Braibant M, Gilot P, Content J (2000) The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 24:449–467

    Article  PubMed  CAS  Google Scholar 

  4. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285

    Article  PubMed  CAS  Google Scholar 

  5. da Silva PE, Von Groll A, Martin A, Palomino JC (2011) Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63:1–9

    Article  PubMed  Google Scholar 

  6. Dover LG, Coxon GD (2011) Current status and research strategies in tuberculosis drug development. J Med Chem 54:6157–6165

    Article  PubMed  CAS  Google Scholar 

  7. Dye C, Espinal MA, Watt CJ, Mbiaga C, Williams BG (2002) Worldwide incidence of multidrug-resistant tuberculosis. J Infect Dis 185:1197–1202

    Article  PubMed  Google Scholar 

  8. Hao P, Shi-Liang Z, Ju L, Ya-Xin D, Biao H, Xu W, Min-Tao H, Shou-Gang K, Ke W (2011) The role of ABC efflux pump, Rv1456c–Rv1457c–Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol (Praha) 56:549–553

    Article  Google Scholar 

  9. He GX, Xie YG, Wang LX, Borgdorff MW, van der Werf MJ, Fan JH, Yan XL, Li FB, Zhang XZ, Zhao YL, van den Hof S (2010) Follow-up of patients with multidrug resistant tuberculosis 4 years after standardized first-line drug treatment. PLoS ONE 5:e10799

    Article  PubMed  Google Scholar 

  10. He GX, Zhao YL, Jiang GL, Liu YH, Xia H, Wang SF, Wang LX, Borgdorff MW, van der Werf MJ, van den Hof S (2008) Prevalence of tuberculosis drug resistance in 10 provinces of China. BMC Infect Dis 8:166

    Article  PubMed  Google Scholar 

  11. Hu Y, Mathema B, Wang W, Hoffner S, Kreiswirth B, Xu B (2008) Prevalence of multidrug-resistant pulmonary tuberculosis in counties with different duration of DOTS implementation in rural China. Microb Drug Resist 14:227–232

    Article  PubMed  CAS  Google Scholar 

  12. Jean SS, Hsueh PR (2011) High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 37:291–295

    Article  PubMed  CAS  Google Scholar 

  13. Jiang X, Zhang W, Zhang Y, Gao F, Lu C, Zhang X, Wang H (2008) Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11

    Article  PubMed  CAS  Google Scholar 

  14. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490

    Article  PubMed  CAS  Google Scholar 

  15. Molle V, Soulat D, Jault JM, Grangeasse C, Cozzone AJ, Prost JF (2004) Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis. FEMS Microbiol Lett 234:215–223

    Article  PubMed  CAS  Google Scholar 

  16. Moody JE, Thomas PJ (2005) Nucleotide binding domain interactions during the mechanochemical reaction cycle of ATP-binding cassette transporters. J Bioenerg Biomembr 37:475–479

    Article  PubMed  CAS  Google Scholar 

  17. Orme IM (2011) Development of new vaccines and drugs for TB: limitations and potential strategic errors. Future Microbiol 6:161–177

    Article  PubMed  CAS  Google Scholar 

  18. Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G (2004) Rv2686c–Rv2687c–Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3175–3178

    Article  PubMed  CAS  Google Scholar 

  19. Shah NS, Wright A, Bai GH, Barrera L, Boulahbal F, Martín-Casabona N, Drobniewski F, Gilpin C, Havelková M, Lepe R, Lumb R, Metchock B, Portaels F, Rodrigues MF, Rüsch-Gerdes S, Van Deun A, Vincent V, Laserson K, Wells C, Cegielski JP (2007) Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13:380–387

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1320–1330

    PubMed  CAS  Google Scholar 

  21. Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, Williams BG, Dye C (2006) Global incidence of multidrug-resistant tuberculosis. J Infect Dis 194:479–485

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grant from the Foundation of Department of Public Health of Jiangsu Province (Grant No. H200954) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2011168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Pei, H., Huang, B. et al. The Expression of ABC Efflux Pump, Rv1217c–Rv1218c, and Its Association with Multidrug Resistance of Mycobacterium tuberculosis in China. Curr Microbiol 66, 222–226 (2013). https://doi.org/10.1007/s00284-012-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0215-3

Keywords

Navigation