Skip to main content
Log in

Dairy Farm Age and Resistance to Antimicrobial Agents in Escherichia coli Isolated from Dairy Topsoil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial agent usage is common in animal agriculture for therapeutic and prophylactic purposes. Selective pressure exerted by these antimicrobials on soil bacteria could result in the selection of strains that are resistant due to chromosomal- or plasmid-derived genetic components. Multiple antimicrobial resistances in Escherichia coli and the direct relationship between antimicrobial agent use over time has been extensively studied, yet the relationship between the age of an animal agriculture environment such as a dairy farm and antibiotic resistance remains unclear. Therefore, we tested the hypothesis that antimicrobial-resistance profiles of E. coli isolated from dairy farm topsoil correlate with dairy farm age. E. coli isolated from eleven dairy farms of varying ages within Roosevelt County, NM were used for MIC determinations to chloramphenicol, nalidixic acid, penicillin, tetracycline, ampicillin, amoxicillin/clavulanic acid, gentamicin, trimethoprim/sulfamethoxazole, cefotaxime, and ciprofloxacin. The minimum inhibitory concentration values of four antibiotics ranged 0.75 to >256 μg/ml, 1 to >256 μg/ml, 12 to >256 μg/ml, and 0.75 to >256 μg/ml for chloramphenicol, nalidixic acid, penicillin, and tetracycline, respectively. The study did not show a direct relationship between antibiotic resistance and the age of dairy farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311

    Article  PubMed  Google Scholar 

  2. Bradford PA, Petersen PJ, Fingerman IM, White DG (1999) Characterization of expanded-spectrum cephalosporin resistance in Escherichia coli isolates associated with bovine calf diarrheal disease. J Antimicrob Chemother 44:607–610

    Article  PubMed  CAS  Google Scholar 

  3. Bunner CA, Norby B, Bartlett PC, Erskine RJ, Downes FP, Kaneene JB (2007) Prevalence and pattern of antimicrobial susceptibility in Escherichia coli isolated from pigs reared under antimicrobial-free and conventional production methods. J Am Vet Med Assoc 231:275–283

    Article  PubMed  CAS  Google Scholar 

  4. Burgos JM, Ellington BA, Varela MF (2005) Presence of multi-drug resistant enteric bacteria in dairy farm topsoil. J Dairy Sci 88:1391–1398

    Article  PubMed  CAS  Google Scholar 

  5. Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502

    Article  PubMed  CAS  Google Scholar 

  6. Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard-seventh edition CLSI document M7-A7, vol 26, No. 226, No. 2

  7. Cohen SP, Hächler H, Levy SB (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 175:1484–1492

    PubMed  CAS  Google Scholar 

  8. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  9. Ferber D (2002) Livestock feed ban preserves drugs’ power. Science 295:27–28

    Article  PubMed  CAS  Google Scholar 

  10. Gannon VP, Rashed M, King RK, Thomas EJ (1993) Detection and characterization of the eae gene of Shiga-like toxin-producing Escherichia coli using polymerase chain reaction. J Clin Microbiol 31:1268–1274

    PubMed  CAS  Google Scholar 

  11. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485

    CAS  Google Scholar 

  12. George AM, Levy SB (1983) Amplifiable resistance to tetracycline, chloramphenicol and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155:531–540

    PubMed  CAS  Google Scholar 

  13. Gustafson RH, Bowen RE (1997) Antibiotic use in animal agriculture. J Appl Microbiol 83:531–541

    Article  PubMed  CAS  Google Scholar 

  14. Hanzawa T, Oka C, Ishiguru N, Sato G (1984) Antibiotic-resistant coliforms in the waste of piggeries and dairy farms. Jpn J Vet Sci 46:363–372

    CAS  Google Scholar 

  15. Hächler H, Cohen SP, Levy SB (1991) marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol 173:5532–5538

    PubMed  Google Scholar 

  16. Itoh F, Ogino T, Itoh K, Watanabe H (1992) Differentiation and detection of pathogenic determinants among diarrheagenic Escherichia coli by polymerase chain reaction using mixed primers. Jpn J Clin Med 50:343–347

    Google Scholar 

  17. Lanz R, Kuhnert P, Boerlin P (2003) Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91:73–84

    Article  PubMed  CAS  Google Scholar 

  18. Moken MC, McMurry LM, Levy SP (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772

    PubMed  CAS  Google Scholar 

  19. Murray PR, Rosenthal K, Kobayashi G, Pfaller M (2005) Antibacterial agents. In: Schmitt W, Miller K (eds) Medical microbiology, 5th edn. Elsevier Mosby, Philadelphia

  20. Nuru S, Osbaldiston GW, Stowe EC, Walker D (1972) Fecal microflora of healthy cattle and pigs. Cornell Vet 62:242–253

    PubMed  CAS  Google Scholar 

  21. Oethinger M, Podglajen I, Kern WV, Levy SB (1998) Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother 42:2089–2094

    PubMed  CAS  Google Scholar 

  22. Peng Y, Hernandez RL, Crow RR, Jones SE, Mathews SA, Arnold AM, Castillo EF, Moseley JM, Varela MF (2008) Pasteurized whole milk confers reduced susceptibilities to the antimicrobial agents trimethoprim, gatifloxacin, cefotaxime, and tetracycline via the marCRAB locus in Escherichia coli. J Dairy Res 75:491–496

    Article  PubMed  CAS  Google Scholar 

  23. Price LB, Johnosn E, Vailes R, Silbergeld E (2005) Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ Health Perspect 113:557–560

    Article  PubMed  CAS  Google Scholar 

  24. Sato K, Bartlett PC, Saeed MA (2005) Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. J Am Vet Med Assoc 226:589–594

    Article  PubMed  CAS  Google Scholar 

  25. Sawant AA, Sordillo LM, Jayarao BM (2005) A survey on antibiotic usage in dairy herds in Pennsylvania. J Dairy Sci 88:2991–2999

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H (1995) Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol 33:701–705

    PubMed  CAS  Google Scholar 

  27. Silbergeld EK, Graham J, Price LB (2008) Industrial food animal production, antimicrobial resistance, and human health. Ann Rev Pub Health 29:151–169

    Article  Google Scholar 

  28. Summers AO (2006) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:S85–S92

    Article  Google Scholar 

  29. Szybalski W, Bryson V (1952) Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol 64:489–499

    PubMed  CAS  Google Scholar 

  30. van den Bogaard AE, Stobberingh EE (1999) Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs 58:589–607

    Article  PubMed  Google Scholar 

  31. Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, Byomi A, Baljer G (1996) Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J Clin Microbiol 34:2980–2984

    PubMed  CAS  Google Scholar 

  32. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto T, Wakisaka N, Sato F, Kato A (1997) Comparison of the nucleotide sequence of enteroaggregative Escherichia coli heat-stable enterotoxin I genes among diarrhea-associated Escherichia coli. FEMS Microbiol Lett 147:89–95

    Article  PubMed  CAS  Google Scholar 

  34. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants 1 R15 GM070562-01 and P20 RR016480, the latter of which is from the NM-INBRE program of the National Center for Research Resources, a contribution from Calton Research Associates in honor of George and Clytie Calton, and an Internal Research Grant from ENMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Varela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S.E., Burgos, J.M., Lutnesky, M.M.F. et al. Dairy Farm Age and Resistance to Antimicrobial Agents in Escherichia coli Isolated from Dairy Topsoil. Curr Microbiol 62, 1139–1146 (2011). https://doi.org/10.1007/s00284-010-9839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9839-3

Keywords

Navigation