Skip to main content
Log in

Novel immunoregulatory role of perforin-positive dendritic cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

An Erratum to this article was published on 17 November 2016

Abstract

The recently described generation of a highly defined population of dendritic cells which express perforin and granzyme A (termed “perf-DCs”) and their ability to selectively delete cognate CD8+ T cell has raised the possibility that these cells play a role in the maintenance of peripheral tolerance. Using bone marrow transplantation, we generated mice selectively lacking perforin expressing dendritic cells. These mice progressively gain weight and exhibit features resembling metabolic syndrome as well as an enhanced susceptibility to autoimmunity induction. Interestingly, these pathological phenotypes were reversed upon treatment with CD4/CD8 neutralizing antibodies. Thus, it appears that this rare subpopulation of dendritic cells (perf-DCs) displays a major regulatory role in adipose tissue inflammatory processes and in autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zehn D, Bevan MJ (2006) T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25:261–270. doi:10.1016/j.immuni.2006.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gallegos AM, Bevan MJ (2006) Central tolerance: good but imperfect. Immunol Rev 209:290–296. doi:10.1111/j.0105-2896.2006.00348.x

    Article  PubMed  Google Scholar 

  3. Dhodapkar MV, Steinman RM, Krasovsky J, et al. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu F, Li Y, Qian S, et al. (1996) Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86−) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 62:659–665. doi:10.1097/00007890-199609150-00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jonuleit H, Schmitt E, Schuler G, et al. (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222. doi:10.1084/jem.192.9.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lutz MB, Kukutsch NA, Menges M, et al. (2000) Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell energy in vitro. Eur J Immunol 30:1048–1052. doi:10.1002/(SICI)1521-4141(200004)30:4<1048::AID-IMMU1048>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  7. Tiao M-M, Lu L, Tao R, et al. (2005) Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NF-kappaB activity. Ann Surg 241:497–505. doi:10.1097/01.sla.0000154267.42933.5d

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trinite B, Chauvin C, Peche H, et al. (2005) Immature CD4− CD103+ rat dendritic cells induce rapid caspase-independent apoptosis-like cell death in various tumor and nontumor cells and phagocytose their victims. J Immunol 175:2408–2417

    Article  CAS  PubMed  Google Scholar 

  9. Yu P, Xiong S, He Q, et al. (2009) Induction of allogeneic mixed chimerism by immature dendritic cells and bone marrow transplantation leads to prolonged tolerance to major histocompatibility complex disparate allografts. Immunology 127:500–511. doi:10.1111/j.1365-2567.2009.03057.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pêche H, Trinité B, Martinet B, Cuturi MC (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 5:255–267. doi:10.1111/j.1600-6143.2004.00683.x

    Article  PubMed  Google Scholar 

  11. Lutz MB, Suri RM, Niimi M, et al. (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30:1813–1822. doi:10.1002/1521-4141(200007)30:7<1813::AID-IMMU1813>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  12. Kim YS, Yang SH, Kang HG, et al. (2006) Distinctive role of donor strain immature dendritic cells in the creation of allograft tolerance. Int Immunol 18:1771–1777. doi:10.1093/intimm/dxl111

    Article  CAS  PubMed  Google Scholar 

  13. Lu L, Qian S, Hershberger PA, et al. (1997) Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J Immunol 158:5676–5684

    CAS  PubMed  Google Scholar 

  14. Luckey U, Maurer M, Schmidt T, et al. (2011) T cell killing by tolerogenic dendritic cells protects mice from allergy. J Clin Invest 121:3860–3871. doi:10.1172/JCI45963DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suss G, Shortman K (1996) A subclass of dendritic cells kills Cd4 T cells via Fas Fas-ligand-induced apoptosis. J Exp Med 183:1789–1796

    Article  CAS  PubMed  Google Scholar 

  16. Waithman J, Allan RS, Kosaka H, et al. (2007) Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J Immunol (Baltimore, Md 1950) 179:4535–4541. doi:10.4049/jimmunol.179.7.4535

    Article  CAS  Google Scholar 

  17. Yu Y, Liu S, Wang W, et al. (2002) Involvement of tumour necrosis factor-alpha-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells. Immunology 106:308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440. doi:10.1182/blood-2006-03-006403

    Article  CAS  PubMed  Google Scholar 

  19. DePaolo RW, Tang F, Kim I, et al. (2008) Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis. Cell Host Microbe 4:350–361. doi:10.1016/j.chom.2008.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161. doi:10.1038/nri746

    Article  CAS  PubMed  Google Scholar 

  21. Taylor PR, Martinez-Pomares L, Stacey M, et al. (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944. doi:10.1146/annurev.immunol.23.021704.115816

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577. doi:10.1038/nri3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashimoto D, Miller J, Merad M (2011) Dendritic cell and macrophage heterogeneity in vivo. Immunity 35:323–335. doi:10.1016/j.immuni.2011.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13:1145–1154. doi:10.1038/ni.2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200:1039–1049. doi:10.1084/jem.20041457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hubert FX, Kinkel SA, Davey GM, et al. (2011) Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118:2462–2472. doi:10.1182/blood-2010-06-286393

    Article  CAS  PubMed  Google Scholar 

  27. Birnberg T, Bar-On L, Sapoznikov A, et al. (2008) Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29:986–997. doi:10.1016/j.immuni.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  28. Probst HC, Lagnel J, Kollias G, Van Den Broek M (2003) Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18:713–720. doi:10.1016/S1074-7613(03)00120-1

    Article  CAS  PubMed  Google Scholar 

  29. Probst HC, McCoy K, Okazaki T, et al. (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6:280–286. doi:10.1038/ni1165

    Article  CAS  PubMed  Google Scholar 

  30. Yamazaki S, Iyoda T, Tarbell K, et al. (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247. doi:10.1084/jem.20030422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sela U, Olds P, Park A, et al. (2011) Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice. J Exp Med 208:2489–2496. doi:10.1084/jem.20110466

    Article  PubMed  PubMed Central  Google Scholar 

  32. Swee LK, Bosco N, Malissen B, et al. (2011) Fms-like tyrosine kinase 3 ligand treatment plenary paper expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment. Blood 113:6277–6287. doi:10.1182/blood-2008-06-161026

    Article  Google Scholar 

  33. Collins CB, Aherne CM, McNamee EN, et al. (2012) Flt3 ligand expands CD103+ dendritic cells and FoxP3+ T regulatory cells, and attenuates Crohn’s-like murine ileitis. Gut 61:1154–1162. doi:10.1136/gutjnl-2011-300820

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Cao X (2015) Regulatory dendritic cells in autoimmunity: a comprehensive review. J Autoimmun 63:1–12. doi:10.1016/j.jaut.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  35. Inaba K, Inaba M, Romani N, et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702. doi:10.1084/jem.176.6.1693

    Article  CAS  PubMed  Google Scholar 

  36. Naik SH, Sathe P, Park H-Y, et al. (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226. doi:10.1038/ni1522

    Article  CAS  PubMed  Google Scholar 

  37. Naik SH, O’Keeffe M, Proietto A, et al. (2010) CD8+, CD8−, and plasmacytoid dendritic cell generation in vitro using flt3 ligand. Methods Mol Biol 595:167–176. doi:10.1007/978-1-60761-421-0_10

    Article  CAS  PubMed  Google Scholar 

  38. Zangi L, Klionsky YZ, Yarimi L, et al. (2012) Deletion of cognate CD8 T cells by immature dendritic cells: a novel role for perforin, granzyme A, TREM-1, and TLR7. Blood 120:1647–1657. doi:10.1182/blood-2012-02-410803

    Article  CAS  PubMed  Google Scholar 

  39. Bar-On L, Jung S (2010) Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 234:76–89. doi:10.1111/j.0105-2896.2009.00875.x

    Article  CAS  PubMed  Google Scholar 

  40. Kägi D, Ledermann B, Bürki K, et al. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37. doi:10.1038/369031a0

    Article  PubMed  Google Scholar 

  41. Zlotnikov-klionsky Y, Nathansohn-levi B, Shezen E, et al (2015) Perforin-positive dendritic cells exhibit an immuno-regulatory role in metabolic syndrome and article perforin-positive dendritic cells exhibit an immuno-regulatory role in metabolic syndrome and autoimmunity. Immunity 1–12. doi:10.1016/j.immuni.2015.08.015

  42. Hotamisligil G, Shargill N, Spiegelman B (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science (80- ) 259:87–91. doi:10.1126/science.7678183

    Article  CAS  Google Scholar 

  43. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97. doi:10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–2101. doi:10.1172/JCI45887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brake DK, Smith EO, Mersmann H, et al. (2006) ICAM-1 expression in adipose tissue: effects of diet-induced obesity in mice. Am J Physiol Cell Physiol 291:C1232–C1239. doi:10.1152/ajpcell.00008.2006

    Article  CAS  PubMed  Google Scholar 

  46. Ndifon W, Gal H, Shifrut E, et al. (2012) Chromatin conformation governs T-cell receptor J gene segment usage. Proc Natl Acad Sci 109:15865–15870. doi:10.1073/pnas.1203916109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feuerer M, Herrero L, Cipolletta D, et al. (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939. doi:10.1038/nm.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winer S, Chan Y, Paltser G, et al. (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–929. doi:10.1038/nm.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang H, Youm Y-H, Vandanmagsar B, et al. (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185:1836–1845. doi:10.4049/jimmunol.1000021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17:763–774. doi:10.1093/bioinformatics/bti465.Differential

    Article  CAS  PubMed  Google Scholar 

  51. Sadyś M, Strzelczak A, Grinn-Gofroń A, Kennedy R (2015) Application of redundancy analysis for aerobiological data. Int J Biometeorol 59:25–36. doi:10.1007/s00484-014-0818-4

    Article  PubMed  Google Scholar 

  52. Aharoni R (2013) New findings and old controversies in the research of multiple sclerosis and its model experimental autoimmune encephalomyelitis. Expert Rev Clin Immunol 9:423–440. doi:10.1586/eci.13.21

    Article  CAS  PubMed  Google Scholar 

  53. Schipper HS, Prakken B, Kalkhoven E, Boes M (2012) Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab 23:407–415. doi:10.1016/j.tem.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  54. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377. doi:10.1038/nrm2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mathis D, Shoelson SE (2011) Immunometabolism: an emerging frontier. Nat Rev Immunol 11:81. doi:10.1038/nri2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Reisner.

Additional information

This article is a contribution to the special issue on Dendritic Cell Subsets and Immune-mediated Diseases - Guest Editor: Francisco Quintana

An erratum to this article is available at http://dx.doi.org/10.1007/s00281-016-0598-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orgad, R., Nathansohn-Levi, B., Kagan, S. et al. Novel immunoregulatory role of perforin-positive dendritic cells. Semin Immunopathol 39, 121–133 (2017). https://doi.org/10.1007/s00281-016-0589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0589-6

Keywords

Navigation