Skip to main content

Advertisement

Log in

Impact of HIV-1 infection on the feto-maternal crosstalk and consequences for pregnancy outcome and infant health

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

An Erratum to this article was published on 18 August 2016

Abstract

Adaptation of the maternal immune system to establish maternal/fetal equilibrium is required for a successful pregnancy. Viral infections, including HIV-1 infection, can alter this maternal/fetal equilibrium, with significant consequences for pregnancy outcome, including miscarriages, impaired fetal growth, and premature delivery. Furthermore, maternal HIV-1 infection has been shown to have a long-term impact on the developing fetal immune system also when the infant is not infected with the virus. In this review, we discuss the consequences of maternal HIV-1 infection and antiretroviral therapy on pregnancy outcome and the health of the uninfected HIV-1-exposed infant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ndirangu J et al (2012) Maternal HIV infection associated with small-for-gestational age infants but not preterm births: evidence from rural South Africa. Hum Reprod 27(6):1846–1856

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schulte J et al (2007) Declines in low birth weight and preterm birth among infants who were born to HIV-infected women during an era of increased use of maternal antiretroviral drugs: Pediatric Spectrum of HIV Disease, 1989–2004. Pediatrics 119(4):e900–e906

    Article  PubMed  Google Scholar 

  3. Revello MG, Gerna G (2002) Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev 15(4):680–715

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fowler KB et al (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326(10):663–667

    Article  CAS  PubMed  Google Scholar 

  5. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19(5):548–556

    Article  CAS  PubMed  Google Scholar 

  6. Newell ML et al (1996) Vertical transmission of HIV-1: maternal immune status and obstetric factors. The European Collaborative Study. AIDS 10(14):1675–1681

    CAS  PubMed  Google Scholar 

  7. UNAIDS. The GAP report 2014. 2014 2014; Available from: http://www.unaids.org/sites/default/files/media_asset/09_ChildrenandpregnantwomenlivingwithHIV.pdf.

  8. Prendergast A et al (2007) International perspectives, progress, and future challenges of paediatric HIV infection. Lancet 370(9581):68–80

    Article  PubMed  Google Scholar 

  9. European collaborative study (2001) HIV-infected pregnant women and vertical transmission in Europe since 1986. AIDS 15(6):761–770

    Article  Google Scholar 

  10. Townsend CL et al (2014) Earlier initiation of ART and further decline in mother-to-child HIV transmission rates, 2000–2011. AIDS 28(7):1049–1057

    Article  PubMed  Google Scholar 

  11. Chasela CS et al (2010) Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N Engl J Med 362(24):2271–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfeifer C, Bunders MJ (2016) Maternal HIV infection alters the immune balance in the mother and fetus; implications for pregnancy outcome and infant health. Curr Opin HIV AIDS 11(2):138–45

    Article  CAS  PubMed  Google Scholar 

  13. Townsend C et al (2010) Antiretroviral therapy and preterm delivery-a pooled analysis of data from the United States and Europe. BJOG 117(11):1399–1410

    Article  PubMed  Google Scholar 

  14. Bunders M et al (2010) Evidence of impact of maternal HIV infection on immunoglobulin levels in HIV-exposed uninfected children. AIDS Res Hum Retroviruses 26(9):967–975

    Article  CAS  PubMed  Google Scholar 

  15. Simani OE et al (2014) Effect of HIV-1 exposure and antiretroviral treatment strategies in HIV-infected children on immunogenicity of vaccines during infancy. AIDS 28(4):531–541

    Article  CAS  PubMed  Google Scholar 

  16. Slogrove AL, Cotton MF, Esser MM (2010) Severe infections in HIV-exposed uninfected infants: clinical evidence of immunodeficiency. J Trop Pediatr 56(2):75–81

    Article  CAS  PubMed  Google Scholar 

  17. Cotton MF, Slogrove AL, Abie H (2014) Infections in HIV-exposed uninfected children with focus on Sub-Saharan Africa. Pediatr Infect Dis J 33(10):1085–1086

    Article  PubMed  Google Scholar 

  18. Bunders M et al (2004) Levels and patterns of neutrophil cell counts over the first 8 years of life in children of HIV-1-infected mothers. AIDS 18(15):2009–2017

    Article  Google Scholar 

  19. Bunders M, Thorne C, Newell ML (2005) Maternal and infant factors and lymphocyte, CD4 and CD8 cell counts in uninfected children of HIV-1-infected mothers. AIDS 19(10):1071–1079

    Article  PubMed  Google Scholar 

  20. Bunders MJ et al (2005) Haematological parameters of HIV-1-uninfected infants born to HIV-1-infected mothers. Acta Paediatr 94(11):1571–1577

    Article  PubMed  Google Scholar 

  21. UNAIDS, AIDS by the numbers 2015, in http://www.unaids.org/sites/default/files/media_asset/AIDS_by_the_numbers_2015_en.pdf. 2015.

  22. Lozano R et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–128

    Article  PubMed  Google Scholar 

  23. Dragic T et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381(6584):667–673

    Article  CAS  PubMed  Google Scholar 

  24. Stevenson M (2003) HIV-1 pathogenesis. Nat Med 9(7):853–860

    Article  CAS  PubMed  Google Scholar 

  25. Letvin NL, Walker BD (2003) Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med 9(7):861–866

    Article  CAS  PubMed  Google Scholar 

  26. Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39(4):633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Altfeld M, Gale M Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16(6):554–62

    Article  CAS  PubMed  Google Scholar 

  28. Stacey AR et al (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83(8):3719–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattapallil JJ et al (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434(7037):1093–1097

    Article  CAS  PubMed  Google Scholar 

  30. Pomerantz RJ, Horn DL (2003) Twenty years of therapy for HIV-1 infection. Nat Med 9(7):867–873

    Article  CAS  PubMed  Google Scholar 

  31. Chaisson RE et al (1986) Significant changes in HIV antigen level in the serum of patients treated with azidothymidine. N Engl J Med 315(25):1610–1611

    Article  CAS  PubMed  Google Scholar 

  32. Hunt PW (2014) HIV and aging: emerging research issues. Curr Opin HIV AIDS 9(4):302–8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hatano H et al (2012) Cell-based Measures of Viral Persistence Are Associated with Immune Activation and PD-1 Expressing CD4+ T cells. J Infect Dis 208(1):50–6

  34. Utay NS, Hunt PW (2016) Role of immune activation in progression to AIDS. Curr Opin HIV AIDS 11(2):131–7

    Article  CAS  PubMed  Google Scholar 

  35. Koch MA et al (1992) Toxic effects of zidovudine in asymptomatic human immunodeficiency virus-infected individuals with CD4+ cell counts of 0.50 x 10(9)/L or less. Detailed and updated results from protocol 019 of the AIDS Clinical Trials Group. Arch Intern Med 152(11):2286–2292

    Article  CAS  PubMed  Google Scholar 

  36. Bozkurt B (2004) Cardiovascular toxicity with highly active antiretroviral therapy: review of clinical studies. Cardiovasc Toxicol 4(3):243–260

    Article  CAS  PubMed  Google Scholar 

  37. Fontas E et al (2004) Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J Infect Dis 189(6):1056–1074

    Article  CAS  PubMed  Google Scholar 

  38. Chappuy H et al (2004) Maternal-fetal transfer and amniotic fluid accumulation of nucleoside analogue reverse transcriptase inhibitors in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother 48(11):4332–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koch CA, Platt JL (2003) Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Semin Immunopathol 25(2):95–117

    Article  CAS  PubMed  Google Scholar 

  40. Koch CA, Platt JL (2007) T cell recognition and immunity in the fetus and mother. Cell Immunol 248(1):12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trowsdale J, Betz AG (2006) Mother’s little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol 7(3):241–246

    Article  CAS  PubMed  Google Scholar 

  42. Mellor AL, Munn DH (2000) Immunology at the maternal-fetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol 18:367–391

    Article  CAS  PubMed  Google Scholar 

  43. Munn DH et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193

    Article  CAS  PubMed  Google Scholar 

  44. Marzi M et al (1996) Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol 106(1):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kwak-Kim JY et al (2003) Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod 18(4):767–773

    Article  CAS  PubMed  Google Scholar 

  46. Blois SM et al (2004) Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol 172(10):5893–9

    Article  CAS  PubMed  Google Scholar 

  47. Uchide N et al (2012) Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediators Inflamm 2012:270670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mussi-Pinhata MM et al (2009) Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis 49(4):522–528

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fiore S et al (2006) Antiretroviral therapy-associated modulation of Th1 and Th2 immune responses in HIV-infected pregnant women. J Reprod Immunol 70(1–2):143–150

    Article  CAS  PubMed  Google Scholar 

  50. Mwanyumba F et al (2002) Placental inflammation and perinatal transmission of HIV-1. J Acquir Immune Defic Syndr 29(3):262–269

    Article  PubMed  Google Scholar 

  51. St Louis ME et al (1993) Risk for perinatal HIV-1 transmission according to maternal immunologic, virologic, and placental factors. JAMA 269(22):2853–2859

    Article  CAS  PubMed  Google Scholar 

  52. Shive CL et al (2016) Inflammation Perturbs the IL-7 Axis, promoting senescence and exhaustion that broadly characterize immune failure in treated HIV infection. J Acquir Immune Defic Syndr 71(5):483–92

    Article  CAS  PubMed  Google Scholar 

  53. Moffett A, Hiby SE, Sharkey AM (2015) The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci 370(1663):20140071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hiby SE et al (2010) Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120(11):4102–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hiby SE et al (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200(8):957–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alter G et al (2004) Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 173(8):5305–11

    Article  CAS  PubMed  Google Scholar 

  57. Alter G et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106(10):3366–9

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Lopez MA et al (2001) CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest 81(3):409–18

    Article  CAS  PubMed  Google Scholar 

  59. Gregoire C et al (2007) The trafficking of natural killer cells. Immunol Rev 220:169–82

    Article  CAS  PubMed  Google Scholar 

  60. Behbahani H et al (2000) Up-regulation of CCR5 expression in the placenta is associated with human immunodeficiency virus-1 vertical transmission. Am J Pathol 157(6):1811–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blois SM et al (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13(12):1450–7

    Article  CAS  PubMed  Google Scholar 

  62. Kammerer U et al (2003) Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol 162(3):887–96

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rogerson SJ et al (2003) Placental tumor necrosis factor alpha but not gamma interferon is associated with placental malaria and low birth weight in Malawian women. Infect Immun 71(1):267–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Townsend CL et al (2010) Antiretroviral therapy in pregnancy: balancing the risk of preterm delivery with prevention of mother-to-child HIV transmission. Antivir Ther 15(5):775–783

    Article  CAS  PubMed  Google Scholar 

  65. Ekouevi DK et al (2008) Antiretroviral therapy in pregnant women with advanced HIV disease and pregnancy outcomes in Abidjan, Cote d’Ivoire. AIDS 22(14):1815–1820

    Article  CAS  PubMed  Google Scholar 

  66. Chen JY et al (2012) Highly active antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J Infect Dis 206(11):1695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar SR et al (2012) Immune reconstitution inflammatory syndrome in HIV-infected patients with and without prior tuberculosis. Int J STD AIDS 23(6):419–423

    Article  PubMed  Google Scholar 

  68. Muller M et al (2010) Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis 10(4):251–261

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seddiki N et al (2009) Proliferation of weakly suppressive regulatory CD4+ T cells is associated with over-active CD4+ T-cell responses in HIV-positive patients with mycobacterial immune restoration disease. Eur J Immunol 39(2):391–403

    Article  CAS  PubMed  Google Scholar 

  70. Divi RL et al (2007) Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environ Mol Mutagen 48(3–4):179–189

    Article  CAS  PubMed  Google Scholar 

  71. Divi RL et al (2010) Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicol Sci 118(1):191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McComsey G (2002) Update on mitochondrial toxicity of antiretrovirals and its link to lipodystrophy. AIDS Rev 4(3):140–147

    PubMed  Google Scholar 

  73. Zhou R et al (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  CAS  PubMed  Google Scholar 

  74. Papp E et al (2016) Low prolactin and high 20alpha-hydroxysteroid dehydrogenase contribute to lower progesterone in HIV-infected protease inhibitor-cART exposed pregnant women. J Infect Dis 213(10):1532–40

  75. Papp E et al (2015) HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction. J Infect Dis 211(1):10–8

    Article  PubMed  Google Scholar 

  76. Powis KM et al (2011) Increased risk of preterm delivery among HIV-infected women randomized to protease versus nucleoside reverse transcriptase inhibitor-based HAART during pregnancy. J Infect Dis 204(4):506–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kieffer MP et al (2014) Lessons learned from early implementation of option B+: the Elizabeth Glaser Pediatric AIDS Foundation experience in 11 African countries. J Acquir Immune Defic Syndr 67 Suppl 4:S188–S194

    Article  PubMed  Google Scholar 

  78. Kumar SB et al (2012) Elevated cytokine and chemokine levels in the placenta are associated with in-utero HIV-1 mother-to-child transmission. AIDS 26(6):685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moussa M et al (2001) Placental cytokine and chemokine production in HIV-1-infected women: trophoblast cells show a different pattern compared to cells from HIV-negative women. Clin Exp Immunol 125(3):455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marlin R et al (2009) Antigen-presenting cells represent targets for R5 HIV-1 infection in the first trimester pregnancy uterine mucosa. PLoS One 4(6):e5971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Johnson EL, Chakraborty R (2012) Placental Hofbauer cells limit HIV-1 replication and potentially offset mother to child transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology 9(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tkachuk AN et al (2001) Malaria enhances expression of CC chemokine receptor 5 on placental macrophages. J Infect Dis 183(6):967–972

    Article  CAS  PubMed  Google Scholar 

  83. Cowan FM et al (2008) Maternal Herpes simplex virus type 2 infection, syphilis and risk of intra-partum transmission of HIV-1: results of a case control study. AIDS 22(2):193–201

    Article  PubMed  Google Scholar 

  84. Adachi K et al (2015) Chlamydia and Gonorrhea in HIV-Infected Pregnant Women and Infant HIV Transmission. Sex Transm Dis 42(10):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yeganeh N et al (2015) Syphilis in HIV-infected mothers and infants: results from the NICHD/HPTN 040 study. Pediatr Infect Dis J 34(3):e52–e57

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mofenson LM et al (1999) Risk factors for perinatal transmission of human immunodeficiency virus type 1 in women treated with zidovudine. Pediatric AIDS Clinical Trials Group Study 185 Team. N Engl J Med 341(6):385–393

    Article  CAS  PubMed  Google Scholar 

  87. Clerici M et al (2000) T-lymphocyte maturation abnormalities in uninfected newborns and children with vertical exposure to HIV. Blood 96(12):3866–3871

    CAS  PubMed  Google Scholar 

  88. Rich KC et al (1997) Function and phenotype of immature CD4+ lymphocytes in healthy infants and early lymphocyte activation in uninfected infants of human immunodeficiency virus-infected mothers. Clin Diagn Lab Immunol 4(3):358–361

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ono E et al (2008) Imbalance of naive and memory T lymphocytes with sustained high cellular activation during the first year of life from uninfected children born to HIV-1-infected mothers on HAART. Braz J Med Biol Res 41(8):700–708

    Article  CAS  PubMed  Google Scholar 

  90. Romano MF et al (2006) Increased CD154 expression in uninfected infants born to HIV-positive mothers exposed to antiretroviral prophylaxis. Viral Immunol 19(3):363–372

    Article  CAS  PubMed  Google Scholar 

  91. Thobakgale CF et al (2007) Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants. J Virol 81(23):12775–12784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Legrand FA et al (2006) Strong HIV-1-specific T cell responses in HIV-1-exposed uninfected infants and neonates revealed after regulatory T cell removal. PLoS One 1:e102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Velilla PA et al (2008) Effect of intrauterine HIV-1 exposure on the frequency and function of uninfected newborns’ dendritic cells. Clin Immunol 126(3):243–250

    Article  CAS  PubMed  Google Scholar 

  94. Bunders MJ et al (2014) Fetal exposure to HIV-1 alters chemokine receptor expression by CD4+T cells and increases susceptibility to HIV-1. Sci Rep 4:6690

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kakkar F et al (2014) Impact of maternal HIV-1 viremia on lymphocyte subsets among HIV-exposed uninfected infants: protective mechanism or immunodeficiency. BMC Infect Dis 14:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Aagaard K et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Shivakoti, R., et al., Soluble CD14: An Independent Biomarker for Risk of HIV Mother-to-Child Transmission in Setting of Pre- and Post-Exposure Antiretroviral Prophylaxis. J. Infect. Dis, 2015

  98. Marleau AM et al (2003) Chimerism of murine fetal bone marrow by maternal cells occurs in late gestation and persists into adulthood. Lab Invest 83(5):673–81

    Article  PubMed  Google Scholar 

  99. Nelson JL et al (2007) Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet beta cell microchimerism. Proc Natl Acad Sci U S A 104(5):1637–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ye Y et al (2012) Maternal microchimerism in muscle biopsies from children with juvenile dermatomyositis. Rheumatol (Oxford) 51(6):987–91

    Article  Google Scholar 

  101. Dutta P et al (2009) Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood 114(17):3578–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wienecke J et al (2012) Pro-inflammatory effector Th cells transmigrate through anti-inflammatory environments into the murine fetus. Placenta 33(1):39–46

    Article  CAS  PubMed  Google Scholar 

  103. Bunders MJ et al (2012) Memory CD4(+)CCR5(+) T cells are abundantly present in the gut of newborn infants to facilitate mother-to-child transmission of HIV-1. Blood 120(22):4383–4390

    Article  CAS  PubMed  Google Scholar 

  104. dos Santos AB et al (2013) Immune cell profile in infants’ lung tissue. Ann Anat 195(6):596–604

    Article  PubMed  Google Scholar 

  105. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35

    Article  CAS  PubMed  Google Scholar 

  106. Elbou Ould MA et al (2004) Cellular immune response of fetuses to cytomegalovirus. Pediatr Res 55(2):280–286

    Article  CAS  PubMed  Google Scholar 

  107. Zhang X et al (2014) CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci Transl Med 6(238):238ra72

    Article  PubMed  CAS  Google Scholar 

  108. Mold JE et al (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322(5907):1562–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mold JE et al (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330(6011):1695–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marazzi MC et al (2011) Extended antenatal use of triple antiretroviral therapy for prevention of mother-to-child transmission of HIV-1 correlates with favorable pregnancy outcomes. AIDS 25(13):1611–8

    Article  CAS  PubMed  Google Scholar 

  111. Johnstone FD et al (1988) Does infection with HIV affect the outcome of pregnancy? Br Med J (Clin Res Ed) 296(6620):467

    Article  CAS  Google Scholar 

  112. Hassan J, Dooley S, Hall W (2007) Immunological response to cytomegalovirus in congenitally infected neonates. Clin Exp Immunol 147(3):465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson EL et al (2015) Cytomegalovirus upregulates expression of CCR5 in central memory cord blood mononuclear cells, which may facilitate in utero HIV type 1 transmission. J Infect Dis 211(2):187–196

    Article  PubMed  Google Scholar 

  114. Viljoen J et al (2015) Cytomegalovirus, and possibly Epstein-Barr virus, shedding in breast milk is associated with HIV-1 transmission by breastfeeding. AIDS 29(2):145–153

    Article  PubMed  Google Scholar 

  115. Bulterys PL et al (2011) Placental malaria and mother-to-child transmission of human immunodeficiency virus-1 in rural Rwanda. Am J Trop Med Hyg 85(2):202–206

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ezeamama AE et al (2014) Clinical malaria diagnosis in pregnancy in relation to early perinatal mother-to-child transmission of HIV: a prospective cohort study. HIV Med 15(5):276–285

    Article  CAS  PubMed  Google Scholar 

  117. Gallagher M et al (2005) The effects of maternal helminth and malaria infections on mother-to-child HIV transmission. AIDS 19(16):1849–1855

    Article  PubMed  Google Scholar 

  118. Hygino J et al (2008) Altered immunological reactivity in HIV-1-exposed uninfected neonates. Clin Immunol 127(3):340–347

    Article  CAS  PubMed  Google Scholar 

  119. Vigano A et al (2007) Immune activation and normal levels of endogenous antivirals are seen in healthy adolescents born of HIV-infected mothers. AIDS 21(2):245–248

    Article  PubMed  Google Scholar 

  120. Holditch SJ et al (2011) Decay kinetics of HIV-1 specific T cell responses in vertically HIV-1 exposed seronegative infants. Front Immunol 2:94

    PubMed  Google Scholar 

  121. Kuhn L et al (2001) T-helper cell responses to HIV envelope peptides in cord blood: protection against intrapartum and breast-feeding transmission. AIDS 15(1):1–9

    Article  CAS  PubMed  Google Scholar 

  122. Yan Z et al (2011) Acquisition of the rheumatoid arthritis HLA shared epitope through microchimerism. Arthritis Rheum 63(3):640–4

    Article  PubMed  PubMed Central  Google Scholar 

  123. Newell ML et al (2004) Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364(9441):1236–1243

    Article  PubMed  Google Scholar 

  124. Marinda E et al (2007) Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr Infect Dis J 26(6):519–526

    Article  PubMed  Google Scholar 

  125. Gibb DM et al (2012) Pregnancy and infant outcomes among HIV-infected women taking long-term ART with and without tenofovir in the DART trial. PLoS Med 9(5):e1001217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tiam, M. and S. Velaphi, Maternal human immunodeficiency virus status and morbidity and mortality in very low birthweight infants. Paediatr. Int. Child Health, 2015: p. 2046905515Y0000000060.

  127. McNally LM et al (2007) Effect of age, polymicrobial disease, and maternal HIV status on treatment response and cause of severe pneumonia in South African children: a prospective descriptive study. Lancet 369(9571):1440–1451

    Article  CAS  PubMed  Google Scholar 

  128. Hsiao NY et al (2013) Cytomegalovirus viraemia in HIV exposed and infected infants: prevalence and clinical utility for diagnosing CMV pneumonia. J Clin Virol 58(1):74–78

    Article  PubMed  Google Scholar 

  129. Mania A et al (2013) Clinical condition and transmission of coinfections with human cytomegalovirus in infants of HIV-1 infected mothers in the era of mother-to-child-transmission prophylaxis. Early Hum Dev 89(2):119–124

    Article  PubMed  Google Scholar 

  130. Manicklal S et al (2014) Birth prevalence of congenital cytomegalovirus among infants of HIV-infected women on prenatal antiretroviral prophylaxis in South Africa. Clin Infect Dis 58(10):1467–1472

    Article  CAS  PubMed  Google Scholar 

  131. Guibert G et al (2009) Decreased risk of congenital cytomegalovirus infection in children born to HIV-1-infected mothers in the era of highly active antiretroviral therapy. Clin Infect Dis 48(11):1516–1525

    Article  PubMed  Google Scholar 

  132. Gompels UA et al (2012) Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 54(3):434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Prendergast AJ, Klenerman P, Goulder PJ (2012) The impact of differential antiviral immunity in children and adults. Nat Rev Immunol 12(9):636–648

    Article  CAS  PubMed  Google Scholar 

  134. Chougnet C et al (2000) Influence of human immunodeficiency virus-infected maternal environment on development of infant interleukin-12 production. J Infect Dis 181(5):1590–1597

    Article  CAS  PubMed  Google Scholar 

  135. Clerici M, Shearer GM (1993) A TH1--TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14(3):107–111

    Article  CAS  PubMed  Google Scholar 

  136. Clerici M et al (1993) Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J Clin Invest 91(3):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jones CE et al (2011) Maternal HIV infection and antibody responses against vaccine-preventable diseases in uninfected infants. JAMA 305(6):576–584

    Article  CAS  PubMed  Google Scholar 

  138. Siberry GK et al (2015) Immunity to measles, mumps, and rubella in US children with perinatal HIV infection or perinatal HIV exposure without infection. Clin Infect Dis 61(6):988–95

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kidzeru EB et al (2014) In-utero exposure to maternal HIV infection alters T-cell immune responses to vaccination in HIV-uninfected infants. AIDS 28(10):1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Siberry GK et al (2012) Increased risk of asthma and atopic dermatitis in perinatally HIV-infected children and adolescents. Clin Immunol 142(2):201–8

    Article  CAS  PubMed  Google Scholar 

  141. Joseph M et al (2016) Racial disparity in the association between body mass index and self-reported asthma in children: a population-based study. J Asthma 137(6):1709–1716

  142. Steiner KL et al (2012) In utero activation of fetal memory T cells alters host regulatory gene expression and affects HIV susceptibility. Virology 425(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Newell ML, Bunders MJ (2013) Safety of antiretroviral drugs in pregnancy and breastfeeding for mother and child. Curr Opin HIV AIDS 8(5):504–510

    Article  PubMed  CAS  Google Scholar 

  144. Siberry GK et al (2015) Lower Newborn Bone Mineral Content Associated With Maternal Use of Tenofovir Disoproxil Fumarate During Pregnancy. Clin Infect Dis 61(6):996–1003

    Article  PubMed  PubMed Central  Google Scholar 

  145. Powis KM et al (2016) In-utero triple antiretroviral exposure associated with decreased growth among HIV-exposed uninfected infants in Botswana. AIDS 30(2):211–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine J. Bunders.

Ethics declarations

Conflict of interest

None.

Financial support and sponsorship

None.

Additional information

This article is a contribution to the special issue on Fetomaternal Cross Talk and Its Effect on Pregnancy Maintenance, Maternal and Offspring Health - Guest Editor: Petra Arck

An erratum to this article is available at http://dx.doi.org/10.1007/s00281-016-0586-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altfeld, M., Bunders, M.J. Impact of HIV-1 infection on the feto-maternal crosstalk and consequences for pregnancy outcome and infant health. Semin Immunopathol 38, 727–738 (2016). https://doi.org/10.1007/s00281-016-0578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0578-9

Keywords

Navigation