Skip to main content

Advertisement

Log in

New insights into basophil heterogeneity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Basophils have become increasingly recognized as important innate immune cells that mediate antihelminth immunity and barrier inflammation. Recent discoveries have uncovered previously unrecognized heterogeneity in basophil populations. However, how diversity in basophil regulation and function impacts human disease remains poorly defined. The goal of the present review is to highlight how new insights into basophil heterogeneity can help us to better understand disease pathogenesis and inform the development of new therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. Ehrlich (1878) Beiträge zur Theorie und Praxis der Histologischen Färbung, Leipzig University

  2. Ishizaka T, De Bernardo R, Tomioka H, Lichtenstein LM, Ishizaka K (1972) Identification of basophil granulocytes as a site of allergic histamine release. J Immunol 108:1000–1008

    CAS  PubMed  Google Scholar 

  3. Siracusa MC, Kim BS, Spergel JM, Artis D (2013) Basophils and allergic inflammation. J Allergy Clin Immunol 132:789–801. doi:10.1016/j.jaci.2013.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crivellato E, Nico B, Ribatti D (2011) The history of the controversial relationship between mast cells and basophils. Immunol Lett 141:10–17. doi:10.1016/j.imlet.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder JT (2009) Basophils beyond effector cells of allergic inflammation. Adv Immunol 101:123–161. doi:10.1016/S0065-2776(08)01004-3

    Article  CAS  PubMed  Google Scholar 

  6. Ogilvie BM, Hesketh PM, Rose ME (1978) Nippostrongylus brasiliensis: peripheral blood leucocyte response of rats, with special reference to basophils. Exp Parasitol 46:20–30

    Article  CAS  PubMed  Google Scholar 

  7. Ogilvie BM, Askenase PW, Rose ME (1980) Basophils and eosinophils in three strains of rats and in athymic (nude) rats following infection with the nematodes Nippostrongylus brasiliensis or Trichinella spiralis. Immunology 39:385–389

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roth RL, Levy DA (1980) Nippostrongylus brasiliensis: peripheral leukocyte responses and correlation of basophils with blood histamine concentration during infection in rats. Exp Parasitol 50:331–341. doi:10.1016/0014-4894(80)90036-3

    Article  CAS  PubMed  Google Scholar 

  9. Rothwell TL (1975) Studies of the responses of basophil and eosinophil leucocytes and mast cells to the nematode Trichostrongylus colubriformis. I. Observations during the expulsion of first and second infections by guinea-pigs. J Pathol 116:51–60. doi:10.1002/path.1711160109

    Article  CAS  PubMed  Google Scholar 

  10. Rothwell TLW, Dineen JK (1972) Cellular reactions in guinea-pigs following primary and challenge infection with Trichostrongylus colubriformis with special reference to the roles played by eosinophils and basophils in rejection of the parasite. Immunology 22:733–745

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dvorak AM, Nabel G, Pyne K, Cantor H, Dvorak HF, Galli SJ (1982) Ultrastructural identification of the mouse basophil. Blood 59:1279–1285

    CAS  PubMed  Google Scholar 

  12. Schrader JW, Lewis SJ, Clark-Lewis I, Culvenor JG (1981) The persisting (P) cell: histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor, and relationship to mast cells. Proc Natl Acad Sci U S A 78:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voehringer D, Shinkai K, Locksley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20:267–277. doi:10.1016/S1074-7613(04)00026-3

    Article  CAS  PubMed  Google Scholar 

  14. Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES et al (2004) Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med 200:507–517. doi:10.1084/jem.20040590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y et al (2012) Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J Immunol 188:1809–1818. doi:10.4049/jimmunol.1101746

    Article  CAS  PubMed  Google Scholar 

  16. Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N et al (2010) Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest 120:2867–2875. doi:10.1172/JCI42680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sullivan BM, Liang H-E, Bando JK, Wu D, Cheng LE, McKerrow JK et al (2011) Genetic analysis of basophil function in vivo. Nat Immunol 12:527–535. doi:10.1038/ni.2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karasuyama H, Yamanishi Y (2014) Basophils have emerged as a key player in immunity. Curr Opin Immunol 31:1–7. doi:10.1016/j.coi.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–233. doi:10.1038/nature10329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siracusa MC, Saenz SA, Tait Wojno ED, Kim BS, Osborne LC, Ziegler CG et al (2013) Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation. Immunity 39:1158–1170. doi:10.1016/j.immuni.2013.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43:29–40. doi:10.1016/j.immuni.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  22. Pulendran B, Artis D (2012) New paradigms in type 2 immunity. Science 337:431–435. doi:10.1126/science.1221064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwartz C, Eberle JU, Voehringer D (2016) Basophils in inflammation. Eur J Pharmacol 778:90–95. doi:10.1016/j.ejphar.2015.04.049

  24. Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13:362–375. doi:10.1038/nri3427

    Article  CAS  PubMed  Google Scholar 

  25. Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H et al (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20:3010–3021. doi:10.1101/gad.1493506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H et al (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci U S A 102:18105–18110. doi:10.1073/pnas.0509148102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sasaki H, Kurotaki D, Osato N, Sato H, Sasaki I, Koizumi S et al (2015) Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125:358–369. doi:10.1182/blood-2014-02-557983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukai K, BenBarak MJ, Tachibana M, Nishida K, Karasuyama H, Taniuchi I et al (2012) Critical role of P1-Runx1 in mouse basophil development. Blood 120:76–85. doi:10.1182/blood-2011-12-399113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D et al (2013) Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates. Immunity 39:97–110. doi:10.1016/j.immuni.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Qi X, Liu B, Huang H (2015) The STAT5–GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J Immunol 194:4328–4338. doi:10.4049/jimmunol.1500018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M, Matsumoto K et al (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110:18620–18625. doi:10.1073/pnas.1311668110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohmori K, Luo Y, Jia Y, Nishida J, Wang Z, Bunting KD et al (2009) IL-3 induces basophil expansion in vivo by directing granulocyte-monocyte progenitors to differentiate into basophil lineage-restricted progenitors in the bone marrow and by increasing the number of basophil/mast cell progenitors in the spleen. J Immunol 182:2835–2841. doi:10.4049/jimmunol.0802870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC et al (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392:90–93. doi:10.1038/32190

    Article  CAS  PubMed  Google Scholar 

  34. Shen T, Kim S, Do J, Wang L, Lantz C, Urban JF et al (2008) T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int Immunol 20:1201–1209. doi:10.1093/intimm/dxn077

    Article  CAS  PubMed  Google Scholar 

  35. Voehringer D (2012) Basophil modulation by cytokine instruction. Eur J Immunol 42:2544–2550. doi:10.1002/eji.201142318

    Article  CAS  PubMed  Google Scholar 

  36. Schroeder JT, Chichester KL, Bieneman AP (2009) Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. J Immunol 182:2432–2438. doi:10.4049/jimmunol.0801782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohnmacht C, Voehringer D (2009) Basophil effector function and homeostasis during helminth infection. Blood 113:2816–2825. doi:10.1182/blood-2008-05-154773

    Article  CAS  PubMed  Google Scholar 

  38. Zheng X, Karsan A, Duronio V, Chu F, Walker DC, Bai TR et al (2002) Interleukin-3, but not granulocyte-macrophage colony-stimulating factor and interleukin-5, inhibits apoptosis of human basophils through phosphatidylinositol 3-kinase: requirement of NF-kappaB-dependent and -independent pathways. Immunology 107:306–315. doi:10.1046/j.1365-2567.2002.01517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Didichenko SA, Spiegl N, Brunner T, Dahinden CA (2008) IL-3 induces a Pim1-dependent antiapoptotic pathway in primary human basophils. Blood 112:3949–3958. doi:10.1182/blood-2008-04-149419

    Article  CAS  PubMed  Google Scholar 

  40. Gibbs BF, Haas H, Falcone FH, Albrecht C, Vollrath IB, Noll T et al (1996) Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur J Immunol 26:2493–2498. doi:10.1002/eji.1830261033

    Article  CAS  PubMed  Google Scholar 

  41. MacGlashan D, White JM, Huang SK, Ono SJ, Schroeder JT, Lichtenstein LM (1994) Secretion of IL-4 from human basophils. The relationship between IL-4 mRNA and protein in resting and stimulated basophils. J Immunol 152:3006–3016

    CAS  PubMed  Google Scholar 

  42. Hida S, Yamasaki S, Sakamoto Y, Takamoto M, Obata K, Takai T et al (2009) Fc receptor γ-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol 10:214–222. doi:10.1038/ni.1686

    Article  CAS  PubMed  Google Scholar 

  43. Kamijo S, Nunomura S, Ra C, Kanaguchi Y, Suzuki Y, Ogawa H et al (2016) Innate basophil IL-4 responses against allergens, endotoxin, and cytokines require the Fc receptor γ-chain. J Allergy Clin Immunol 137:1613–1615.e2. doi:10.1016/j.jaci.2015.10.037

  44. Bezbradica JS, Rosenstein RK, DeMarco RA, Brodsky I, Medzhitov R (2014) A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat Immunol 15:333–342. doi:10.1038/ni.2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546. doi:10.1038/nm.2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hill DA, Artis D (2013) The influence of commensal bacteria-derived signals on basophil-associated allergic inflammation. Gut Microbes 4:76–83. doi:10.4161/gmic.22759

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570. doi:10.1016/j.chom.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herbst T, Sichelstiel A, Schär C, Yadava K, Bürki K, Cahenzli J et al (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184:198–205. doi:10.1164/rccm.201010-1574OC

    Article  CAS  PubMed  Google Scholar 

  49. Ohnmacht C, Park J-H, Cording S, Wing JB, Atarashi K, Obata Y et al (2015) The microbiota regulates type 2 immunity through RORγt + T cells. Science 349:989–993. doi:10.1126/science.aac4263

    Article  CAS  PubMed  Google Scholar 

  50. Chapuy L, Bsat M, Mehta H, Rubio M, Wakahara K, Van VQ et al (2014) Basophils increase in Crohn disease and ulcerative colitis and favor mesenteric lymph node memory TH17/TH1 response. J Allergy Clin Immunol 134:978–981. doi:10.1016/j.jaci.2014.05.025

    Article  CAS  PubMed  Google Scholar 

  51. Rodriguez Gomez M, Talke Y, Hofmann C, Ketelsen I, Hermann F, Reich B et al (2014) Basophils control T-cell responses and limit disease activity in experimental murine colitis. Mucosal Immunol 7:188–199. doi:10.1038/mi.2013.38

    Article  CAS  PubMed  Google Scholar 

  52. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56. doi:10.1038/ni.3049

    Article  CAS  PubMed  Google Scholar 

  53. Kimura I, Tanizaki Y, Saito K, Takahashi K, Ueda N, Sato S (1975) Appearance of basophils in the sputum of patients with bronchial asthma. Clin Allergy 5:95–98

    Article  CAS  PubMed  Google Scholar 

  54. Kepley CL, McFeeley PJ, Oliver JM, Lipscomb MF (2001) Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med 164:1053–1058. doi:10.1164/ajrccm.164.6.2102025

    Article  CAS  PubMed  Google Scholar 

  55. Koshino T, Teshima S, Fukushima N, Takaishi T, Hirai K, Miyamoto Y et al (1993) Identification of basophils by immunohistochemistry in the airways of post-mortem cases of fatal asthma. Clin Exp Allergy 23:919–925

    Article  CAS  PubMed  Google Scholar 

  56. Duff AL, Pomeranz ES, Gelber LE, Price GW, Farris H, Hayden FG et al (1993) Risk factors for acute wheezing in infants and children: viruses, passive smoke, and IgE antibodies to inhalant allergens. Pediatrics 92:535–540

    CAS  PubMed  Google Scholar 

  57. Agrawal R, Wisniewski J, Yu MD, Kennedy JL, Platts-Mills T, Heymann PW et al (2014) Infection with human rhinovirus 16 promotes enhanced IgE responsiveness in basophils of atopic asthmatics. Clin Exp Allergy 44:1266–1273. doi:10.1111/cea.12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972. doi:10.1146/annurev.immunol.17.1.931

    Article  CAS  PubMed  Google Scholar 

  59. Kraft S, Kinet J-P (2007) New developments in FcϵRI regulation, function and inhibition. Nat Rev Immunol 7:365–378. doi:10.1038/nri2072

    Article  CAS  PubMed  Google Scholar 

  60. Bruhns P, Jönsson F (2015) Mouse and human FcR effector functions. Immunol Rev 268:25–51. doi:10.1111/imr.12350

    Article  CAS  PubMed  Google Scholar 

  61. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704. doi:10.1038/nm.2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsai SH, Kinoshita M, Kusu T, Kayama H, Okumura R, Ikeda K et al (2015) The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells. Immunity 42:279–293. doi:10.1016/j.immuni.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  63. Broide DH (2001) Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol 108:S65–S71. doi:10.1067/mai.2001.116436

    Article  CAS  PubMed  Google Scholar 

  64. Cassard L, Jönsson F, Arnaud S, Daëron M (2012) Fcγ receptors inhibit mouse and human basophil activation. J Immunol 189:2995–3006. doi:10.4049/jimmunol.1200968

    Article  CAS  PubMed  Google Scholar 

  65. Malbec O, Daëron M (2007) The mast cell IgG receptors and their roles in tissue inflammation. Immunol Rev 217:206–221. doi:10.1111/j.1600-065X.2007.00510.x

    Article  CAS  PubMed  Google Scholar 

  66. Wu LC (2011) Immunoglobulin E receptor signaling and asthma. J Biol Chem 286:32891–32897. doi:10.1074/jbc.R110.205104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwartz C, Turqueti-Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D (2014) Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A 111:E5169–E5177. doi:10.1073/pnas.1412663111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Milgrom H, Fick RB, Su JQ, Reimann JD, Bush RK, Watrous ML et al (1999) Treatment of allergic asthma with monoclonal anti-IgE antibody. N Engl J Med 341:1966–1973. doi:10.1056/NEJM199912233412603

    Article  CAS  PubMed  Google Scholar 

  69. Strunk RC, Bloomberg GR (2006) Omalizumab for asthma. N Engl J Med 354:2689–2695. doi:10.1056/NEJMct055184

    Article  CAS  PubMed  Google Scholar 

  70. Maurer M, Rosén K, Hsieh H-J, Saini S, Grattan C, Gimenéz-Arnau A et al (2013) Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N Engl J Med 368:924–935. doi:10.1056/NEJMoa1215372

    Article  CAS  PubMed  Google Scholar 

  71. Borkowski TA, Jouvin M-H, Lin S-Y, Kinet J-P (2001) Minimal requirements for IgE-mediated regulation of surface FcεRI. J Immunol 167:1290–1296. doi:10.4049/jimmunol.167.3.1290

    Article  CAS  PubMed  Google Scholar 

  72. Hill DA, Siracusa MC, Ruymann KR, Tait Wojno ED, Artis D, Spergel JM (2014) Omalizumab therapy is associated with reduced circulating basophil populations in asthmatic children. Allergy 69:674–677. doi:10.1111/all.12375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA et al (2004) Omalizumab rapidly decreases nasal allergic response and FcεRI on basophils. J Allergy Clin Immunol 113:297–302. doi:10.1016/j.jaci.2003.11.044

    Article  CAS  PubMed  Google Scholar 

  74. MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, McKenzie-White J et al (1997) Down-regulation of FcεRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158:1438–1445

    CAS  PubMed  Google Scholar 

  75. Saini SS, MacGlashan DW, Sterbinsky SA, Togias A, Adelman DC, Lichtenstein LM et al (1999) Down-regulation of human basophil IgE and FC epsilon RI alpha surface densities and mediator release by anti-IgE-infusions is reversible in vitro and in vivo. J Immunol 162:5624–5630

    CAS  PubMed  Google Scholar 

  76. Zaidi AK, Saini SS, Macglashan DW (2010) Regulation of Syk kinase and FcRbeta expression in human basophils during treatment with omalizumab. J Allergy Clin Immunol 125:902–908. doi:10.1016/j.jaci.2009.12.996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. MacGlashan DW (2007) Endocytosis, recycling, and degradation of unoccupied FcepsilonRI in human basophils. J Leukoc Biol 82:1003–1010. doi:10.1189/jlb.0207103

    Article  CAS  PubMed  Google Scholar 

  78. Eckman JA, Hamilton RG, Gober LM, Sterba PM, Saini SS (2008) Basophil phenotypes in chronic idiopathic urticaria in relation to disease activity and autoantibodies. J Invest Dermatol 128:1956–1963. doi:10.1038/jid.2008.55

    Article  CAS  PubMed  Google Scholar 

  79. Kaplan AP, Joseph K, Maykut RJ, Geba GP, Zeldin RK (2008) Treatment of chronic autoimmune urticaria with omalizumab. J Allergy Clin Immunol 122:569–573. doi:10.1016/j.jaci.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  80. Mukai K, Matsuoka K, Taya C, Suzuki H, Yokozeki H, Nishioka K et al (2005) Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23:191–202. doi:10.1016/j.immuni.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  81. Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y et al (2013) Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38:570–580. doi:10.1016/j.immuni.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  82. Hashimoto T, Satoh T, Yokozeki H (2015) Protective role of STAT6 in basophil-dependent prurigo-like allergic skin inflammation. J Immunol 194:4631–4640. doi:10.4049/jimmunol.1401032

    Article  CAS  PubMed  Google Scholar 

  83. Bauer RN, Manohar M, Singh AM, Jay DC, Nadeau KC (2015) The future of biologics: applications for food allergy. J Allergy Clin Immunol 135:312–323. doi:10.1016/j.jaci.2014.12.1908

    Article  PubMed  Google Scholar 

  84. Garcia G, Magnan A, Chiron R, Contin-Bordes C, Berger P, Taillé C et al (2013) A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 144:411–419. doi:10.1378/chest.12-1961

    Article  CAS  PubMed  Google Scholar 

  85. Allakhverdi Z, Comeau MR, Jessup HK, Yoon B-RP, Brewer A, Chartier S et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204:253–258. doi:10.1084/jem.20062211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kay AB, Clark P, Maurer M, Ying S (2015) Elevations in T-helper-2-initiating cytokines (interleukin-33, interleukin-25 and thymic stromal lymphopoietin) in lesional skin from chronic spontaneous (“idiopathic”) urticaria. Br J Dermatol 172:1294–1302. doi:10.1111/bjd.13621

    Article  CAS  PubMed  Google Scholar 

  87. Rocha R, Vitor AB, Trindade E, Lima R, Tavares M, Lopes J et al (2011) Omalizumab in the treatment of eosinophilic esophagitis and food allergy. Eur J Pediatr 170:1471–1474. doi:10.1007/s00431-011-1540-4

    Article  CAS  PubMed  Google Scholar 

  88. Noda S, Krueger JG, Guttman-Yassky E (2015) The translational revolution and use of biologics in patients with inflammatory skin diseases. J Allergy Clin Immunol 135:324–336. doi:10.1016/j.jaci.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  89. Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR, Monticelli LA et al (2014) Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol 193:3717–3725. doi:10.4049/jimmunol.1401307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Noti M, Wojno EDT, Kim BS, Siracusa MC, Giacomin PR, Nair MG et al (2013) Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med 19:1005–1013. doi:10.1038/nm.3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giacomin PR, Siracusa MC, Walsh KP, Grencis RK, Kubo M, Comeau MR et al (2012) Thymic stromal lymphopoietin-dependent basophils promote Th2 cytokine responses following intestinal helminth infection. J Immunol 189:4371–4378. doi:10.4049/jimmunol.1200691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE et al (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol 133:1390–1399. doi:10.1016/j.jaci.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu Y-J (2006) Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203:269–273. doi:10.1084/jem.20051745

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gao P-S, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M et al (2010) Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 125:1403–1407. doi:10.1016/j.jaci.2010.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kimura S, Pawankar R, Mori S, Nonaka M, Masuno S, Yagi T et al (2011) Increased expression and role of thymic stromal lymphopoietin in nasal polyposis. Allergy Asthma Immunol Res 3:186–193. doi:10.4168/aair.2011.3.3.186

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nagarkar DR, Poposki JA, Tan BK, Comeau MR, Peters AT, Hulse KE et al (2013) Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 132:593–600. doi:10.1016/j.jaci.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramasamy A, Curjuric I, Coin LJ, Kumar A, McArdle WL, Imboden M et al (2011) A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol 128:996–1005. doi:10.1016/j.jaci.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  98. Iijima H, Kaneko Y, Yamada H, Yatagai Y, Masuko H, Sakamoto T et al (2013) A distinct sensitization pattern associated with asthma and the thymic stromal lymphopoietin (TSLP) genotype. Allergol Int 62:123–130. doi:10.2332/allergolint.12-OA-0488

    Article  CAS  PubMed  Google Scholar 

  99. Rothenberg ME, Spergel JM, Sherrill JD, Annaiah K, Martin LJ, Cianferoni A et al (2010) Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet 42:289–291. doi:10.1038/ng.547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sherrill JD, Gao P-S, Stucke EM, Blanchard C, Collins MH, Putnam PE et al (2010) Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J Allergy Clin Immunol 126:160–165. doi:10.1016/j.jaci.2010.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li M, Hener P, Zhang Z, Kato S, Metzger D, Chambon P (2006) Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci U S A 103:11736–11741. doi:10.1073/pnas.0604575103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M et al (2009) CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 123:472–478. doi:10.1016/j.jaci.2008.10.022

    Article  CAS  PubMed  Google Scholar 

  103. Smith SG, Gugilla A, Mukherjee M, Merim K, Irshad A, Tang W et al (2015) Thymic stromal lymphopoietin and IL-33 modulate migration of hematopoietic progenitor cells in patients with allergic asthma. J Allergy Clin Immunol 135:1594–1602. doi:10.1016/j.jaci.2014.12.1918

    Article  CAS  PubMed  Google Scholar 

  104. Hui CCK, Rusta-Sallehy S, Asher I, Heroux D, Denburg JA (2014) The effects of thymic stromal lymphopoietin and IL-3 on human eosinophil–basophil lineage commitment: Relevance to atopic sensitization. Immun Inflamm Dis 2:44–55. doi:10.1002/iid3.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36:1007–1024. doi:10.1007/s11745-001-0812-7

    Article  CAS  PubMed  Google Scholar 

  106. Lott JM, Sumpter TL, Turnquist HR (2015) New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol 97:1037–1048. doi:10.1189/jlb.3RI1214-595R

    Article  CAS  PubMed  Google Scholar 

  107. Molofsky AB, Savage AK, Locksley RM (2015) Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42:1005–1019. doi:10.1016/j.immuni.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Muto T, Fukuoka A, Kabashima K, Ziegler SF, Nakanishi K, Matsushita K et al (2014) The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int Immunol 26:539–549. doi:10.1093/intimm/dxu058

    Article  CAS  PubMed  Google Scholar 

  109. Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC (2015) The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 63:80–85. doi:10.1016/j.molimm.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  110. Schneider E, Petit-Bertron A-F, Bricard R, Levasseur M, Ramadan A, Girard J-P et al (2009) IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol 183:3591–3597. doi:10.4049/jimmunol.0900328

    Article  CAS  PubMed  Google Scholar 

  111. Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A et al (2008) An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol 181:5981–5989. doi:10.4049/jimmunol.181.9.5981

    Article  CAS  PubMed  Google Scholar 

  112. Junttila IS, Watson C, Kummola L, Chen X, Hu-Li J, Guo L et al (2013) Efficient cytokine-induced IL-13 production by mast cells requires both IL-33 and IL-3. J Allergy Clin Immunol 132:704–712. doi:10.1016/j.jaci.2013.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smithgall MD, Comeau MR, Yoon B-RP, Kaufman D, Armitage R, Smith DE (2008) IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK Cells. Int Immunol 20:1019–1030. doi:10.1093/intimm/dxn060

    Article  CAS  PubMed  Google Scholar 

  114. Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B (2010) Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol 184:1143–1147. doi:10.4049/jimmunol.0902447

    Article  CAS  PubMed  Google Scholar 

  115. Cianferoni A, Spergel J (2016) Eosinophilic esophagitis: a comprehensive review. Clin Rev Allergy Immunol 50:159–174. doi:10.1007/s12016-015-8501-z

  116. Mulder DJ, Justinich CJ (2010) B cells, IgE and mechanisms of type I hypersensitivity in eosinophilic oesophagitis. Gut 59:6–7. doi:10.1136/gut.2009.189316

    Article  PubMed  Google Scholar 

  117. Stokes JR, Casale TB (2015) The use of anti-IgE therapy beyond allergic asthma. J Allergy Clin Immunol Pract 3:162–166. doi:10.1016/j.jaip.2014.10.010

    Article  PubMed  Google Scholar 

  118. Foroughi S, Foster B, Kim N, Bernardino LB, Scott LM, Hamilton RG et al (2007) Anti-IgE treatment of eosinophil-associated gastrointestinal disorders. J Allergy Clin Immunol 120:594–601. doi:10.1016/j.jaci.2007.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gauvreau GM, O’Byrne PM, Boulet L-P, Wang Y, Cockcroft D, Bigler J et al (2014) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370:2102–2110. doi:10.1056/NEJMoa1402895

    Article  PubMed  CAS  Google Scholar 

  120. Kambayashi T, Laufer TM (2014) Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14:719–730. doi:10.1038/nri3754

    Article  CAS  PubMed  Google Scholar 

  121. M. Sarfati, K. Wakahara, L. Chapuy, G. Delespesse (2015) Mutual interaction of basophils and T cells in chronic inflammatory diseases, Front. Immunol. 6 doi:10.3389/fimmu.2015.00399

  122. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A et al (2013) Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun 4:1738. doi:10.1038/ncomms2740

    Article  PubMed Central  CAS  Google Scholar 

  123. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR et al (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705. doi:10.1038/ni.1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y et al (2009) Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat Immunol 10:706–712. doi:10.1038/ni.1737

    Article  CAS  PubMed  Google Scholar 

  125. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318. doi:10.1038/ni1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Allenspach EJ, Lemos MP, Porrett PM, Turka LA, Laufer TM (2008) Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29:795–806. doi:10.1016/j.immuni.2008.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MAM, Kool M et al (2010) Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111. doi:10.1084/jem.20101563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A et al (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zaiss DMW, Gause WC, Osborne LC, Artis D (2015) Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 42:216–226. doi:10.1016/j.immuni.2015.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zaiss DMW, van Loosdregt J, Gorlani A, Bekker CPJ, Gröne A, Sibilia M et al (2013) Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38:275–284. doi:10.1016/j.immuni.2012.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Meulenbroeks C, van Weelden H, Schwartz C, Voehringer D, Redegeld FAM, Rutten VPMG et al (2015) Basophil-derived amphiregulin is essential for UVB irradiation–induced immune suppression. J Invest Dermatol 135:222–228. doi:10.1038/jid.2014.329

    Article  CAS  PubMed  Google Scholar 

  132. Qi Y, Operario DJ, Oberholzer CM, Kobie JJ, Looney RJ, Georas SN et al (2010) Human basophils express amphiregulin in response to T cell–derived IL-3. J Allergy Clin Immunol 126:1260–1266. doi:10.1016/j.jaci.2010.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125:S73–S80. doi:10.1016/j.jaci.2009.11.017

    Article  PubMed  PubMed Central  Google Scholar 

  134. Denzel A, Maus UA, Rodriguez Gomez M, Moll C, Niedermeier M, Winter C et al (2008) Basophils enhance immunological memory responses. Nat Immunol 9:733–742. doi:10.1038/ni.1621

    Article  CAS  PubMed  Google Scholar 

  135. Rodriguez Gomez M, Talke Y, Goebel N, Hermann F, Reich B, Mack M (2010) Basophils support the survival of plasma cells in mice. J Immunol 185:7180–7185. doi:10.4049/jimmunol.1002319

    Article  PubMed  Google Scholar 

  136. Charles N, Hardwick D, Daugas E, Illei GG, Rivera J (2010) Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 16:701–707. doi:10.1038/nm.2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lack G, Fox D, Northstone K, Golding J (2003) Factors associated with the development of peanut allergy in childhood. N Engl J Med 348:977–985. doi:10.1056/NEJMoa013536

    Article  PubMed  Google Scholar 

  138. Han H, Thelen TD, Comeau MR, Ziegler SF (2014) Thymic stromal lymphopoietin–mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest 124:5442–5452. doi:10.1172/JCI77798

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374. doi:10.1016/j.immuni.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  140. Jin G, Matsushita T, Hamaguchi Y, Le Huu D, Ishii T, Hasegawa M et al (2012) Basophils and mast cells play critical roles for leukocyte recruitment in IgE-mediated cutaneous reverse passive Arthus reaction. J Dermatol Sci 67:181–189. doi:10.1016/j.jdermsci.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  141. Nakashima C, Otsuka A, Kitoh A, Honda T, Egawa G, Nakajima S et al (2014) Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. J Allergy Clin Immunol 134:100–107. doi:10.1016/j.jaci.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  142. Cheng LE, Sullivan BM, Retana LE, Allen CDC, Liang H-E, Locksley RM (2015) IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J Exp Med 212:513–524. doi:10.1084/jem.20141671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Borchers MT, Ansay T, DeSalle R, Daugherty BL, Shen H, Metzger M et al (2002) In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration. J Leukoc Biol 71:1033–1041

    CAS  PubMed  Google Scholar 

  144. Van Dyken SJ, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31:317–343. doi:10.1146/annurev-immunol-032712-095906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gundra UM, Girgis NM, Ruckerl D, Jenkins S, Ward LN, Kurtz ZD et al (2014) Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123:e110–e122. doi:10.1182/blood-2013-08-520619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Han H, Headley MB, Xu W, Comeau MR, Zhou B, Ziegler SF (2013) Thymic stromal lymphopoietin amplifies the differentiation of alternatively activated macrophages. J Immunol 190:904–912. doi:10.4049/jimmunol.1201808

    Article  CAS  PubMed  Google Scholar 

  147. Huang SC-C, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855. doi:10.1038/ni.2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35. doi:10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  149. Obata-Ninomiya K, Ishiwata K, Tsutsui H, Nei Y, Yoshikawa S, Kawano Y et al (2013) The skin is an important bulwark of acquired immunity against intestinal helminths. J Exp Med 210:2583–2595. doi:10.1084/jem.20130761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702. doi:10.1146/annurev-immunol-032713-120145

    Article  CAS  PubMed  Google Scholar 

  151. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. doi:10.1016/j.immuni.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim BS (2015) Innate lymphoid cells in the skin. J Invest Dermatol 135:673–678. doi:10.1038/jid.2014.401

    Article  CAS  PubMed  Google Scholar 

  153. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301. doi:10.1038/nature14189

    Article  CAS  PubMed  Google Scholar 

  154. von Moltke J, Locksley RM (2014) I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Curr Opin Immunol 31:58–65. doi:10.1016/j.coi.2014.09.009

    Article  CAS  Google Scholar 

  155. Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA et al (2014) Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40:758–771. doi:10.1016/j.immuni.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  156. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA et al (2011) Innate lymphoid cells promote lung tissue homeostasis following acute influenza virus infection. Nat Immunol 12:1045–1054. doi:10.1031/ni.2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R et al (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371:130–139. doi:10.1056/NEJMoa1314768

    Article  PubMed  CAS  Google Scholar 

  158. Thaçi D, Simpson EL, Beck LA, Bieber T, Blauvelt A, Papp K et al (2015) Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet Lond, Engl. doi:10.1016/S0140-6736(15)00388-8

    Google Scholar 

  159. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368:2455–2466. doi:10.1056/NEJMoa1304048

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. Kim.

Additional information

This article is a contribution to the special issue on Basophils and Mast Cells in Immunity and Inflammation - Guest Editor: Hajime Karasuyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oetjen, L.K., Noti, M. & Kim, B.S. New insights into basophil heterogeneity. Semin Immunopathol 38, 549–561 (2016). https://doi.org/10.1007/s00281-016-0567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0567-z

Keywords

Navigation