Skip to main content

Advertisement

Log in

Role of innate immune system in systemic sclerosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Recognition of microbial or viral compounds is crucial to elicit an immune response and pattern recognition receptors (PRRs) form the first line of defence. An important family of PRRs are the Toll-like receptors (TLRs) with numerous evidences indicating their crucial role in identifying microbial or viral compounds. However, the danger theory, where the innate immune system responds to danger signals such as proteins released during damage or necrosis rather than only non-self is gaining ground. Indeed, TLRs are able to recognise endogenous molecules and have been implicated as key players in numerous autoimmune diseases including systemic sclerosis (SSc). TLR2 is known to be upregulated in SSc and has been shown to respond to the endogenous ligand amyloid A resulting in increased IL-6 secretion. TLR4 is now known to respond to a variety of endogenous ligands including fibronectin, containing alternatively spliced exons encoding type III repeat extra domain (EDA). EDA is only expressed upon tissue damage, and elevated levels can be found in SSc patients, idiopathic pulmonary fibrosis and cardiac allograft fibrosis, while deletion of EDA or TLR4 in mice reduces their fibrotic response. Further, stimulation of TLR8 with single-stranded RNA leads to increased expression of TIMP-1. This has been shown to require both IRAK4 and NF-κB with evidence suggesting autoantibodies bind to RNA to stimulate TIMP-1 production in monocytes. Therefore, TLR-mediated signalling provides numerous potential therapeutic targets for development of therapies for the treatment of multi-systemic autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    Article  CAS  PubMed  Google Scholar 

  2. Loo Y-M, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ciechomska M, Cant R, Finnigan J, van Laar JM, O’Reilly S (2013) Role of Toll-like receptors in systemic sclerosis. Expert Reviews in Molecular Medicine, 2013. 15: p. null-null

  4. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  CAS  PubMed  Google Scholar 

  5. Carty M, Goodbody R, Scheoder M, Stack J, Moynagh, PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7(10):1074–1081

  6. Kim Y, Zhou P, Qian L, Chaung JZ, Lee J, Li C, Iadecola C, Nathan C, Ding A (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204(9):2063–2074

  7. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  8. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci 106(37):15819–15824

  9. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103(33):12481–12486

  10. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12(1):991–1045

    Article  CAS  PubMed  Google Scholar 

  11. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, Mcketrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng, L, Gardet A, Tong Z, JAny SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE et al (2013) Succinate is an inflammatory signal that induces IL-1[bgr] through HIF-1[agr]. Nature 496(7444):238–242

  12. Cheng N et al (2008) Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 181(1):22–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Björkman L et al (2008) Serum amyloid A mediates human neutrophil production of reactive oxygen species through a receptor independent of formyl peptide receptor like-1. J Leukoc Biol 83(2):245–253

    Article  PubMed  Google Scholar 

  14. Agarwal S et al (2011) Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res Ther 13(1):R3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. O’Reilly S et al (2014) Serum amyloid a induces interleukin-6 in dermal fibroblasts via toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 143(3):331–340

    Article  PubMed  Google Scholar 

  16. O’Reilly S et al (2012) Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor Rev 23(3):99–107

    Article  PubMed  Google Scholar 

  17. Lakota K et al (2015) Serum amyloid A is a marker for pulmonary involvement in systemic sclerosis. PLoS One 10(1), e0110820

    Article  PubMed Central  PubMed  Google Scholar 

  18. Broen JCA et al (2012) A rare polymorphism in the gene for toll-like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis Rheum 64(1):264–271

    Article  CAS  PubMed  Google Scholar 

  19. Koumakis E et al (2012) Brief report: candidate gene study in systemic sclerosis identifies a rare and functional variant of the TNFAIP3 locus as a risk factor for polyautoimmunity. Arthritis Rheum 64(8):2746–2752

    Article  CAS  PubMed  Google Scholar 

  20. Poltorak A et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  21. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5(4):331–342

    Article  CAS  PubMed  Google Scholar 

  23. Park JS et al (2004) Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279(9):7370–7377

    Article  CAS  PubMed  Google Scholar 

  24. Jiang D et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179

    Article  CAS  PubMed  Google Scholar 

  25. Midwood K et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780

    Article  CAS  PubMed  Google Scholar 

  26. Okamura Y et al (2001) The extra domain a of fibronectin activates Toll-like receptor 4. J Biol Chem 276(13):10229–10233

    Article  CAS  PubMed  Google Scholar 

  27. Bhattacharyya S et al (2014) FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Science Translational Medicine 232:232ra50

    Article  Google Scholar 

  28. Muro AF et al (2008) An essential role for fibronectin extra type III domain a in pulmonary fibrosis. Am J Respir Crit Care Med 177(6):638–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Booth AJ et al (2012) Recipient-derived EDA fibronectin promotes cardiac allograft fibrosis. J Pathol 226(4):609–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bhattacharyya S et al (2013) Toll-like receptor 4 signaling augments transforming growth factor-β responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am J of Pathol 182(1):192–205

    Article  CAS  Google Scholar 

  31. Takahashi T et al (2015) Amelioration of tissue fibrosis by Toll-like receptor 4 knockout in murine models of systemic sclerosis. Arthritis Rheum 67(1):254–265

    Article  CAS  Google Scholar 

  32. Hügle T et al (2013) Tumor necrosis factor–costimulated T lymphocytes from patients with systemic sclerosis trigger collagen production in fibroblasts. Arthritis Rheum 65(2):481–491

    Article  PubMed  Google Scholar 

  33. Ma J et al (2014) TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS One 9(5), e97985

    Article  PubMed Central  PubMed  Google Scholar 

  34. van Bon L et al (2014) Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med 370(5):433–443

    Article  PubMed Central  PubMed  Google Scholar 

  35. van Bon L et al (2014) Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis 73(8):1585–1589

    Article  PubMed  Google Scholar 

  36. Heil F et al (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303(5663):1526–1529

    Article  CAS  PubMed  Google Scholar 

  37. Farina GA et al (2010) Poly(I:C) drives type I IFN- and TGF[beta]-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J Invest Dermatol 130(11):2583–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ciechomska M et al (2013) Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors. Ann Rheum Dis 72(8):1382–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vollmer J et al (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 202(11):1575–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Carmona FD et al (2013) The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis. PLoS One 8(1), e54419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kim D et al (2008) Induction of interferon-α by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-α activity with lung fibrosis. Arthritis Rheum 58(7):2163–2173

    Article  CAS  PubMed  Google Scholar 

  42. Wermuth PJ, Jimenez SA (2012) Gadolinium compounds signaling through TLR 4 and TLR 7 in normal human macrophages: establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis. J Immunol 189(1):318–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yanai H et al (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103

    Article  CAS  PubMed  Google Scholar 

  44. Farina A et al (2014) Epstein-Barr virus infection induces aberrant TLR activation pathway and fibroblast-myofibroblast conversion in scleroderma. J Invest Dermatol 134(4):954–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lok SS et al (2001) Epstein–Barr virus and wild p53 in idiopathic pulmonary fibrosis. Respir Med 95(10):787–791

    Article  CAS  PubMed  Google Scholar 

  46. Dieudé P et al (2011) NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann Rheum Dis 70(4):668–674

    Article  PubMed  Google Scholar 

  47. Artlett CM et al (2011) The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum 63(11):3563–3574

    Article  CAS  PubMed  Google Scholar 

  48. Wree A et al (2014) NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59(3):898–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bracey NA et al (2014) Mitochondrial NLRP3 protein induces reactive oxygen species to promote smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem 289(28):19571–19584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wang W et al (2013) Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J Immunol 190(3):1239–1249

    Article  CAS  PubMed  Google Scholar 

  51. Duewell P et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Huang H et al (2013) Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol 191(5):2665–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Hornung V et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Arslan F et al (2012) Treatment with OPN-305, a humanized anti–Toll-like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Inter 5(2):279–287

    Article  CAS  Google Scholar 

  55. Hamidi S, Schäfer-Korting M, Weindl G (2014) TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. Biochim Biophysic Acta (BBA) 1841(4):484–494

    Article  CAS  Google Scholar 

  56. Opal SM et al (2013) Effect of eritoran, an antagonist of md2-tlr4, on mortality in patients with severe sepsis: the access randomized trial. JAMA 309(11):1154–1162

    Article  CAS  PubMed  Google Scholar 

  57. Sacre SM et al (2007) The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am J Pathology 170(2):518–525

    Article  CAS  Google Scholar 

  58. Coll RC et al. (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. advance online publication

  59. Lamkanfi M et al (2009) Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J Cell Biol 187(1):61–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Roelofs MF et al (2008) The functional variant (Asp299gly) of toll-like receptor 4 (TLR4) influences TLR4-mediated cytokine production in rheumatoid arthritis. J of Rheum 35(4):558–561

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven O’Reilly.

Additional information

This article is a contribution to the Special Issue on Immunopathology of Systemic Sclerosis - Guest Editors: Jacob M. van Laar and John Varga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fullard, N., O’Reilly, S. Role of innate immune system in systemic sclerosis. Semin Immunopathol 37, 511–517 (2015). https://doi.org/10.1007/s00281-015-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0503-7

Keywords

Navigation