Skip to main content

Advertisement

Log in

Protective and detrimental roles of inflammasomes in disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Over recent years, inflammasomes have emerged as key regulators of immune and inflammatory responses. They induce programmed cell death and direct the release of danger signals and the inflammatory cytokines interleukin (IL)-1β and IL-18. The concerted actions of inflammasomes are of utmost importance for responding adequately to harmful environmental agents and infections. However, deregulated inflammasome signaling is increasingly linked to a diversity of human pathologies, including rheumatoid arthritis, inflammatory bowel disease, and rare, hereditary periodic fever syndromes. In this review, we discuss recent insight in the protective and detrimental roles of inflammasomes in selected infectious, autoinflammatory and autoimmune diseases, and cover clinically approved therapies that interfere with inflammasome signaling. These findings highlight the importance of fine-balancing the Ying and Yang activities of inflammasomes for sustained homeostasis and suggest that further understanding of inflammasome mechanisms may offer new cures for human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161

    CAS  PubMed  Google Scholar 

  2. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    CAS  PubMed  Google Scholar 

  3. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:3209

    PubMed Central  PubMed  Google Scholar 

  5. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022

    CAS  PubMed  Google Scholar 

  6. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    CAS  PubMed  Google Scholar 

  7. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11:213–220

    CAS  PubMed  Google Scholar 

  8. Brusselle GG, Provoost S, Bracke KR, Kuchmiy A, Lamkanfi M (2014) Inflammasomes in respiratory disease: from bench to bedside. Chest 145:1121–1133

    CAS  PubMed  Google Scholar 

  9. Clay GM, Sutterwala FS, Wilson ME (2014) NLR proteins and parasitic disease. Immunol Res 59:142–152

    CAS  PubMed  Google Scholar 

  10. Drummond RA, Gaffen SL, Hise AG, Brown GD (2014) Innate defense against fungal pathogens. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a019620

    PubMed  Google Scholar 

  11. Chen I, Ichinohe T (2015) Response of host inflammasomes to viral infection. Trends Microbiol 23:55–63

    CAS  PubMed  Google Scholar 

  12. Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13:325–332

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bauernfeind F, Hornung V (2013) Of inflammasomes and pathogens—sensing of microbes by the inflammasome. EMBO Mol Med 5:814–826

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Tian X, Pascal G, Monget P (2009) Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol 9:202

    PubMed Central  PubMed  Google Scholar 

  15. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    CAS  PubMed  Google Scholar 

  16. Sastalla I, Crown D, Masters SL, McKenzie A, Leppla SH, Moayeri M (2013) Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics 14:188

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M, O’Donnell JA et al (2012) NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37:1009–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Moayeri M, Crown D, Newman ZL, Okugawa S, Eckhaus M, Cataisson C et al (2010) Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment. PLoS Pathog 6:e1001222

    PubMed Central  PubMed  Google Scholar 

  19. Terra JK, Cote CK, France B, Jenkins AL, Bozue JA, Welkos SL et al (2010) Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J Immunol 184:17–20

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 462:199–204

    CAS  PubMed  Google Scholar 

  21. Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    CAS  PubMed  Google Scholar 

  22. Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9:e1003452

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hett EC, Slater LH, Mark KG, Kawate T, Monks BG, Stutz A et al (2013) Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 9:398–405

    CAS  PubMed  Google Scholar 

  24. Guey B, Bodnar M, Manie SN, Tardivel A, Petrilli V (2014) Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A 111:17254–17259

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192

    CAS  PubMed  Google Scholar 

  26. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    CAS  PubMed  Google Scholar 

  27. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM et al (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490:288–291

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    CAS  PubMed  Google Scholar 

  29. Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C et al (2014) Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16:249–256

    CAS  PubMed  Google Scholar 

  30. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, Zak DE et al (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–978

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Demon D, Vande Walle L, Lamkanfi M (2014) Sensing the enemy within: how macrophages detect intracellular gram-negative bacteria. Trends Biochem Sci 39:574–576

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lage SL, Longo C, Branco LM, da Costa TB, Buzzo Cde L, Bortoluci KR (2014) Emerging concepts about NAIP/NLRC4 inflammasomes. Front Immunol 5:309

    PubMed Central  PubMed  Google Scholar 

  34. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191:3986–3989

    CAS  PubMed  Google Scholar 

  35. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110:14408–14413

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600

    CAS  PubMed  Google Scholar 

  38. Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M et al (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:539–542

    CAS  PubMed  Google Scholar 

  39. Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard JC, Kanneganti TD, Lamkanfi M (2015) Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc Natl Acad Sci U S A 112:1541–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog 7:e1002452

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Warren SE, Armstrong A, Hamilton MK, Mao DP, Leaf IA, Miao EA et al (2010) Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2. J Immunol 185:818–821

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30:693–702

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412–419

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Xu H, Yang J, Gao W, Li L, Li P, Zhang L et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241

    CAS  PubMed  Google Scholar 

  48. Gavrilin MA, Abdelaziz DH, Mostafa M, Abdulrahman BA, Grandhi J, Akhter A et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol 188:3469–3477

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Rigante D, Vitale A, Lucherini OM, Cantarini L (2014) The hereditary autoinflammatory disorders uncovered. Autoimmun Rev 13:892–900

    CAS  PubMed  Google Scholar 

  50. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424

    CAS  PubMed  Google Scholar 

  51. Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 27:621–668

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L et al (2011) Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34:755–768

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Roldan R, Ruiz AM, Miranda MD, Collantes E (2008) Anakinra: new therapeutic approach in children with Familial Mediterranean Fever resistant to colchicine. Joint Bone Spine Rev Rhum 75:504–505

    Google Scholar 

  54. Meinzer U, Quartier P, Alexandra JF, Hentgen V, Retornaz F, Kone-Paut I (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum 41:265–271

    CAS  PubMed  Google Scholar 

  55. Shinkai K, McCalmont TH, Leslie KS (2008) Cryopyrin-associated periodic syndromes and autoinflammation. Clin Exp Dermatol 33:1–9

    CAS  PubMed  Google Scholar 

  56. Hoffman HM, Wanderer AA, Broide DH (2001) Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol 108:615–620

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452

    CAS  PubMed  Google Scholar 

  58. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355:581–592

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A et al (2008) Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 58:2443–2452

    CAS  PubMed  Google Scholar 

  60. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360:2416–2425

    CAS  PubMed  Google Scholar 

  61. Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30:860–874

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C et al (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30:875–887

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Brydges SD, Broderick L, McGeough MD, Pena CA, Mueller JL, Hoffman HM (2013) Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest 123:4695–4705

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Bonar SL, Brydges SD, Mueller JL, McGeough MD, Pena C, Chen D et al (2012) Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 7:e35979

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Sibley CH, Plass N, Snow J, Wiggs EA, Brewer CC, King KA et al (2012) Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum 64:2375–2386

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C et al (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–175

    CAS  PubMed  Google Scholar 

  70. Luksch H, Romanowski MJ, Chara O, Tungler V, Caffarena ER, Heymann MC et al (2013) Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1beta. Hum Mutat 34:122–131

    CAS  PubMed  Google Scholar 

  71. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P (2004) Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem 279:24785–24793

    CAS  PubMed  Google Scholar 

  72. Heymann MC, Winkler S, Luksch H, Flecks S, Franke M, Russ S et al (2014) Human procaspase-1 variants with decreased enzymatic activity are associated with febrile episodes and may contribute to inflammation via RIP2 and NF-kappaB signaling. J Immunol 192:4379–4385

    CAS  PubMed  Google Scholar 

  73. Olson JK, Miller SD (2009) The innate immune response affects the development of the autoimmune response in Theiler’s virus-induced demyelinating disease. J Immunol 182:5712–5722

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shaw PJ, McDermott MF, Kanneganti TD (2011) Inflammasomes and autoimmunity. Trends Mol Med 17:57–64

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Villani AC, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C et al (2009) Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 41:71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Tamura K, Fukuda Y, Sashio H, Takeda N, Bamba H, Kosaka T et al (2002) IL18 polymorphism is associated with an increased risk of Crohn’s disease. J Gastroenterol 37:111–116

    CAS  PubMed  Google Scholar 

  77. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32:379–391

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y et al (2011) NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 17:1359–1372

    PubMed Central  PubMed  Google Scholar 

  80. Lebeis SL, Powell KR, Merlin D, Sherman MA, Kalman D (2009) Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 77:604–614

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H et al (2003) Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol 38:837–844

    CAS  PubMed  Google Scholar 

  82. Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH et al (2012) Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 5:288–298

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Demon D, Kuchmiy A, Fossoul A, Zhu Q, Kanneganti TD, Lamkanfi M (2014) Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis. Mucosal Immunol 7:1480–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Williams TM, Leeth RA, Rothschild DE, McDaniel DK, Coutermarsh-Ott SL, Simmons AE et al (2015) Caspase-11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 308:G139–150

    CAS  PubMed  Google Scholar 

  85. Oficjalska K, Raverdeau M, Aviello G, Wade SC, Hickey A, Sheehan KM et al (2015) Protective role for caspase-11 during acute experimental murine colitis. J Immunol 194:1252–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Tobon GJ, Youinou P, Saraux A (2010) The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. Autoimmun Rev 9:A288–292

    CAS  PubMed  Google Scholar 

  87. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT et al (2010) Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum 62:22–32

    CAS  PubMed  Google Scholar 

  88. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC (2014) Biologics in Rheumatoid Arthritis G, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 73:1202–1210

    CAS  PubMed  Google Scholar 

  89. Yang CA, Huang ST, Chiang BL (2014) Association of NLRP3 and CARD8 genetic polymorphisms with juvenile idiopathic arthritis in a Taiwanese population. Scand J Rheumatol 43:146–152

    PubMed  Google Scholar 

  90. Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis. Cochrane Database Syst Rev CD005121

  91. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512:69–73

    PubMed  Google Scholar 

  92. Pontillo A, Brandao L, Guimaraes R, Segat L, Araujo J, Crovella S (2010) Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity 43:583–589

    CAS  PubMed  Google Scholar 

  93. Pontillo A, Girardelli M, Kamada AJ, Pancotto JA, Donadi EA, Crovella S et al (2012) Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity 45:271–278

    CAS  PubMed  Google Scholar 

  94. Kahlenberg JM, Kaplan MJ (2014) The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol 26:475–481

    CAS  PubMed  Google Scholar 

  95. Magitta NF, Boe Wolff AS, Johansson S, Skinningsrud B, Lie BA, Myhr KM et al (2009) A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun 10:120–124

    CAS  PubMed  Google Scholar 

  96. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33:925–937

    PubMed  Google Scholar 

  97. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y et al (2013) NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1beta processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A 110:2952–2956

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Jin Y, Birlea SA, Fain PR, Spritz RA (2007) Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 127:2558–2562

    CAS  PubMed  Google Scholar 

  99. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC et al (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225

    CAS  PubMed  Google Scholar 

  100. Zurawek M, Fichna M, Januszkiewicz-Lewandowska D, Gryczynska M, Fichna P, Nowak J (2010) A coding variant in NLRP1 is associated with autoimmune Addison’s disease. Hum Immunol 71:530–534

    CAS  PubMed  Google Scholar 

  101. Ostendorf B, Iking-Konert C, Kurz K, Jung G, Sander O, Schneider M (2005) Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis. Ann Rheum Dis 64:630–633

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Calvani N, Tucci M, Richards HB, Tartaglia P, Silvestris F (2005) Th1 cytokines in the pathogenesis of lupus nephritis: the role of IL-18. Autoimmun Rev 4:542–548

    CAS  PubMed  Google Scholar 

  103. Voronov E, Dayan M, Zinger H, Gayvoronsky L, Lin JP, Iwakura Y et al (2006) IL-1 beta-deficient mice are resistant to induction of experimental SLE. Eur Cytokine Netw 17:109–116

    CAS  PubMed  Google Scholar 

  104. Kahlenberg JM, Yalavarthi S, Zhao W, Hodgin JB, Reed TJ, Tsuji NM et al (2014) An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheum 66:152–162

    CAS  Google Scholar 

  105. Lech M, Lorenz G, Kulkarni OP, Grosser MO, Stigrot N, Darisipudi MN et al (2014) NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-beta receptor signalling. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-205496

    PubMed  Google Scholar 

  106. Aksentijevich I, DP C, Remmers EF, Mueller JL, Le J, Kolodner RD et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 56:1273–1285

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Neven B, Prieur AM, Quartier dit Maire P (2008) Cryopyrinopathies: update on pathogenesis and treatment. Nat Clin Pract Rheumatol 4:481–489

    CAS  PubMed  Google Scholar 

  108. Russo RA, Melo-Gomes S, Lachmann HJ, Wynne K, Rajput K, Eleftheriou D et al (2014) Efficacy and safety of canakinumab therapy in paediatric patients with cryopyrin-associated periodic syndrome: a single-centre, real-world experience. Rheumatology (Oxford) 53:665–670

    CAS  Google Scholar 

  109. Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hoffman HM, Throne ML, Amar NJ, Cartwright RC, Kivitz AJ, Soo Y et al (2012) Long-term efficacy and safety profile of rilonacept in the treatment of cryopryin-associated periodic syndromes: results of a 72-week open-label extension study. Clin Ther 34:2091–2103

    CAS  PubMed  Google Scholar 

  111. de Koning HD, van Gijn ME, Stoffels M, Jongekrijg J, Zeeuwen PL, Elferink MG et al (2014) Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. doi:10.1016/j.jaci.2014.07.050

    PubMed  Google Scholar 

  112. Lipsker D (2010) The Schnitzler syndrome. Orphanet J Rare Dis 5:38

    PubMed Central  PubMed  Google Scholar 

  113. Dwivedi M, Laddha NC, Mansuri MS, Marfatia YS, Begum R (2013) Association of NLRP1 genetic variants and mRNA overexpression with generalized vitiligo and disease activity in a Gujarat population. Br J Dermatol 169:1114–1125

    CAS  PubMed  Google Scholar 

  114. Marie J, Kovacs D, Pain C, Jouary T, Cota C, Vergier B et al (2014) Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol 170:816–823

    CAS  PubMed  Google Scholar 

  115. Alkhateeb A, Jarun Y, Tashtoush R (2013) Polymorphisms in NLRP1 gene and susceptibility to autoimmune thyroid disease. Autoimmunity 46:215–221

    CAS  PubMed  Google Scholar 

  116. Grishman EK, White PC, Savani RC (2012) Toll-like receptors, the NLRP3 inflammasome, and interleukin-1beta in the development and progression of type 1 diabetes. Pediatr Res 71:626–632

    CAS  PubMed  Google Scholar 

  117. Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R et al (2013) Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381:1905–1915

    CAS  PubMed  Google Scholar 

  118. Schott WH, Haskell BD, Tse HM, Milton MJ, Piganelli JD, Choisy-Rossi CM et al (2004) Caspase-1 is not required for type 1 diabetes in the NOD mouse. Diabetes 53:99–104

    CAS  PubMed  Google Scholar 

  119. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM et al (2010) Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32:367–378

    CAS  PubMed  Google Scholar 

  120. Kastbom A, Verma D, Eriksson P, Skogh T, Wingren G, Soderkvist P (2008) Genetic variation in proteins of the cryopyrin inflammasome influences susceptibility and severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology 47:415–417

    CAS  PubMed  Google Scholar 

  121. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC, Eyre S et al (2014) Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 73:1202–1210

    CAS  PubMed  Google Scholar 

  122. Goldbach-Mansky R (2009) Blocking interleukin-1 in rheumatic diseases. Ann N Y Acad Sci 1182:111–123

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M et al (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912

    CAS  PubMed  Google Scholar 

  124. Kimkong I, Avihingsanon Y, Hirankarn N (2009) Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 18:1066–1072

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.V.G. is a postdoctoral fellow with the Research Foundation Flanders (FWO grant 1.2.449.13 N). Work in ML’s laboratory is supported by grants from VIB, Ghent University (BOF 01 N02313, BOF 01 J11113, BOF14/GOA/013), the Fund for Scientific Research-Flanders (grants G030212N and G011315N), and the European Research Council (grant 281600).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lamkanfi.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters, Tilmann Kallinich and Seza Ozen

Pedro H. V. Saavedra and Dieter Demon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra, P.H.V., Demon, D., Van Gorp, H. et al. Protective and detrimental roles of inflammasomes in disease. Semin Immunopathol 37, 313–322 (2015). https://doi.org/10.1007/s00281-015-0485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0485-5

Keywords

Navigation