Skip to main content

Advertisement

Log in

The cross-talk between opportunistic fungi and the mammalian host via microbiota’s metabolism

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

An increased understanding of the importance of microbiota in shaping the host’s immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. It is now clear that a three-way interaction between host, fungi, and microbiota dictates the types of host–fungus relationship. Indeed, microbial dysbiosis predisposes to a variety of chronic fungal infections and diseases at local and distant sites. By correlating changes in metabolite profiles with microbiota metagenomic composition, we have defined a functional node whereby certain bacteria species contribute to host–fungal symbiosis and mucosal homeostasis. A tryptophan catabolic pathway is exploited by commensal lactobacilli and the mammalian host to increase fitness in response to Candida albicans by inducing resistance and tolerance mechanisms of antifungal immunity. Much like lactobacilli in the gut, Firmicutes change significantly in the airways during aspergillosis. The aryl hydrocarbon receptor has a pivotal role in connecting tryptophan catabolism by microbial communities and the host’s own pathway of tryptophan degradation through the enzyme indoleamine 2,3-dioxygenase 1. These data suggest that the study of the human microbiota in the trans-omics era, with a focus on metagenomics and metabonomics, is providing novel insights into the regulation of host immune responsiveness to fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. doi:10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  2. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. doi:10.1126/science.1223490

    Article  CAS  PubMed  Google Scholar 

  3. Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (2014) Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 39:751–766. doi:10.1111/apt.12665

    Article  CAS  PubMed  Google Scholar 

  4. Paulino LC, Tseng CH, Strober BE, Blaser MJ (2006) Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol 44:2933–2941. doi:10.1128/JCM. 00785-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cutler JE, Deepe GS Jr, Klein BS (2007) Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5:13–28. doi:10.1038/nrmicro1537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288. doi:10.1038/nri2939

    Article  CAS  PubMed  Google Scholar 

  7. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. doi:10.1038/nri3684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63. doi:10.1186/gm467

    Article  PubMed Central  PubMed  Google Scholar 

  9. Scanlan PD, Marchesi JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J 2:1183–1193. doi:10.1038/ismej.2008.76

    Article  CAS  PubMed  Google Scholar 

  10. Schulze J, Sonnenborn U (2009) Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int 106:837–842. doi:10.3238/arztebl.2009.0837

    PubMed Central  PubMed  Google Scholar 

  11. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019. doi:10.1371/journal.pone.0066019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498. doi:10.1016/j.diagmicrobio.2010.04.005

    Article  PubMed  Google Scholar 

  13. Dollive S, Peterfreund GL, Sherrill-Mix S, Bittinger K, Sinha R, Hoffmann C, Nabel CS, Hill DA, Artis D, Bachman MA, Custers-Allen R, Grunberg S, Wu GD, Lewis JD, Bushman FD (2012) A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13:R60. doi:10.1186/gb-2012-13-7-r60

    Article  PubMed Central  PubMed  Google Scholar 

  14. Scupham AJ, Presley LL, Wei B, Bent E, Griffith N, McPherson M, Zhu F, Oluwadara O, Rao N, Braun J, Borneman J (2006) Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol 72:793–801. doi:10.1128/AEM. 72.1.793-801.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dickson RP, Martinez FJ, Huffnagle GB (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702. doi:10.1016/S0140-6736(14)61136-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7:e36313. doi:10.1371/journal.pone.0036313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713. doi:10.1371/journal.ppat.1000713

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841. doi:10.1080/00365520801935434

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Wang C, Tang C, He Q, Li N, Li J (2014) Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 48:513–523. doi:10.1097/MCG.0000000000000035

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 55:625–632. doi:10.1111/j.1348-0421.2011.00364.x

    Article  CAS  PubMed  Google Scholar 

  21. Smeekens SP, Malireddi RK, Plantinga TS, Buffen K, Oosting M, Joosten LA, Kullberg BJ, Perfect JR, Scott WK, van de Veerdonk FL, Xavier RJ, van de Vosse E, Kanneganti TD, Johnson MD, Netea MG (2014) Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur J Clin Microbiol Infect Dis 33:711–722. doi:10.1007/s10096-013-2002-x

    Article  CAS  PubMed  Google Scholar 

  22. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349. doi:10.1038/nrmicro2313

    Article  CAS  PubMed  Google Scholar 

  23. Krause R, Schwab E, Bachhiesl D, Daxbock F, Wenisch C, Krejs GJ, Reisinger EC (2001) Role of Candida in antibiotic-associated diarrhea. J Infect Dis 184:1065–1069. doi:10.1086/323550

    Article  CAS  PubMed  Google Scholar 

  24. Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB (2013) Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep 3:2191. doi:10.1038/srep02191

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165. doi:10.1016/j.immuni.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  26. Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568

    Article  CAS  PubMed  Google Scholar 

  27. Kalo-Klein A, Witkin SS (1990) Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 58:260–262

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, Sanglard D, Reichard U, Palmer GE, Latge JP, Puccetti P, Romani L (2012) Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 3:683. doi:10.1038/ncomms1685

    Article  PubMed  Google Scholar 

  29. Bonifazi P, Zelante T, D’Angelo C, De Luca A, Moretti S, Bozza S, Perruccio K, Iannitti RG, Giovannini G, Volpi C, Fallarino F, Puccetti P, Romani L (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2:362–374. doi:10.1038/mi.2009.17

    Article  CAS  PubMed  Google Scholar 

  30. Romani L, Puccetti P (2006) Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 14:183–189

    Article  CAS  PubMed  Google Scholar 

  31. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116:916–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’Angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179:5999–6008

    Article  PubMed  Google Scholar 

  33. Haas-Stapleton EJ, Lu Y, Hong S, Arita M, Favoreto S, Nigam S, Serhan CN, Agabian N (2007) Candida albicans modulates host defense by biosynthesizing the pro-resolving mediator resolvin E1. PLoS One 2:e1316. doi:10.1371/journal.pone.0001316

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gerard R, Sendid B, Colombel JF, Poulain D, Jouault T (2013) An immunological link between Candida albicans colonization and Crohn’s disease. Crit Rev Microbiol. doi:10.3109/1040841X.2013.810587

    PubMed  Google Scholar 

  35. Standaert-Vitse A, Sendid B, Joossens M, Francois N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF (2009) Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol 104:1745–1753. doi:10.1038/ajg.2009.225

    Article  CAS  PubMed  Google Scholar 

  36. Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003. doi:10.1128/IAI. 72.9.4996-5003.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gaitanis G, Velegraki A, Mayser P, Bassukas ID (2013) Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol 31:455–463. doi:10.1016/j.clindermatol.2013.01.012

    Article  PubMed  Google Scholar 

  38. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895. doi:10.1038/nri2432

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro H, Thaiss CA, Levy M, Elinav E (2014) The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol 30C:54–62. doi:10.1016/j.coi.2014.07.003

    Article  Google Scholar 

  40. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, Wild B, Camargo SM, Singer D, Richter A, Kuba K, Fukamizu A, Schreiber S, Clevers H, Verrey F, Rosenstiel P, Penninger JM (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487:477–481. doi:10.1038/nature11228

    Article  CAS  PubMed  Google Scholar 

  41. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. doi:10.1016/j.immuni.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  42. Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC (2007) Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 67:7082–7087. doi:10.1158/0008-5472.CAN-07-1872

    Article  CAS  PubMed  Google Scholar 

  43. Murray MF (2007) The human indoleamine 2,3-dioxygenase gene and related human genes. Curr Drug Metab 8:197–200

    Article  CAS  PubMed  Google Scholar 

  44. Pfefferkorn ER (1984) Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A 81:908–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fallarino F, Grohmann U, Puccetti P (2012) Indoleamine 2,3-dioxygenase: from catalyst to signaling function. Eur J Immunol 42:1932–1937. doi:10.1002/eji.201242572

    Article  CAS  PubMed  Google Scholar 

  46. Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143. doi:10.1016/j.it.2012.10.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC, Mellor AL (2012) Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 249:135–157. doi:10.1111/j.1600-065X.2012.01149.x

    Article  CAS  PubMed  Google Scholar 

  48. Zelante T, Fallarino F, Bistoni F, Puccetti P, Romani L (2009) Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect 11:133–141. doi:10.1016/j.micinf.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  49. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ (2013) Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–1308. doi:10.1016/j.cell.2013.10.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586. doi:10.1038/nm1563

    Article  CAS  PubMed  Google Scholar 

  51. Yuasa HJ, Ball HJ (2013) Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. Fungal Genet Biol 56:98–106. doi:10.1016/j.fgb.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  52. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. doi:10.1038/nature13323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 32:403–432. doi:10.1146/annurev-immunol-032713-120245

    Article  CAS  PubMed  Google Scholar 

  54. Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, Tosi I, Hirota K, Nestle FO, Mrowietz U, Gilchrist MJ, Stockinger B (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40:989–1001. doi:10.1016/j.immuni.2014.04.019

    Article  PubMed Central  PubMed  Google Scholar 

  55. Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J (2013) Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 35:677–691. doi:10.1007/s00281-013-0394-4

    Article  CAS  PubMed  Google Scholar 

  56. Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC, Velegraki A, Skaltsounis AL (2008) AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Investig Dermatol 128:1620–1625. doi:10.1038/sj.jid.5701252

    Article  CAS  PubMed  Google Scholar 

  57. Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G (2012) Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol 167:496–505. doi:10.1111/j.1365-2133.2012.11014.x

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116. doi:10.1021/tx7001965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    Article  CAS  PubMed  Google Scholar 

  60. Lowe MM, Mold JE, Kanwar B, Huang Y, Louie A, Pollastri MP, Wang C, Patel G, Franks DG, Schlezinger J, Sherr DH, Silverstone AE, Hahn ME, McCune JM (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 9:e87877. doi:10.1371/journal.pone.0087877

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198. doi:10.4049/jimmunol.0903670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. doi:10.1038/nature10491

    Article  CAS  PubMed  Google Scholar 

  63. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71. doi:10.1038/nature06880

    Article  CAS  PubMed  Google Scholar 

  64. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109. doi:10.1038/nature06881

    Article  CAS  PubMed  Google Scholar 

  65. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2012) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151. doi:10.1038/ni.2187

    Article  CAS  Google Scholar 

  66. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, Zhou L (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104. doi:10.1016/j.immuni.2011.11.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Teunissen MB, Munneke JM, Bernink JH, Spuls PI, Res PC, Te Velde A, Cheuk S, Brouwer MW, Menting SP, Eidsmo L, Spits H, Hazenberg MD, Mjosberg J (2014) Composition of innate lymphoid cell (ILC) subsets in the human skin: enrichment of NCR ILC3 in lesional skin and blood of psoriasis patients. J Investig Dermatol. doi:10.1038/jid.2014.146

    Google Scholar 

  68. Sonnenberg GF, Fouser LA, Artis D (2011) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12:383–390. doi:10.1038/ni.2025

    Article  CAS  PubMed  Google Scholar 

  69. Behnsen J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang W, Raffatellu M (2014) The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 40:262–273. doi:10.1016/j.immuni.2014.01.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Zenewicz LA, Yin X, Wang G, Elinav E, Hao L, Zhao L, Flavell RA (2013) IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol 190:5306–5312. doi:10.4049/jimmunol.1300016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Qiu J, Guo X, Chen ZM, He L, Sonnenberg GF, Artis D, Fu YX, Zhou L (2013) Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39:386–399. doi:10.1016/j.immuni.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  72. Zelante T, Iannitti R, De Luca A, Romani L (2011) IL-22 in antifungal immunity. Eur J Immunol 41:270–275. doi:10.1002/eji.201041246

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, Chen H, Wu C (2009) Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur J Immunol 39:1472–1479. doi:10.1002/eji.200838811

    Article  CAS  PubMed  Google Scholar 

  74. Eyerich K, Eyerich S, Hiller J, Behrendt H, Traidl-Hoffmann C (2010) Chronic mucocutaneous candidiasis, from bench to bedside. Eur J Dermatol 20:260–265. doi:10.1684/ejd.2010.0910

    CAS  PubMed  Google Scholar 

  75. De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, Fuchs D, De Bernardis F, Puccetti P, Romani L (2013) IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9:e1003486. doi:10.1371/journal.ppat.1003486

    Article  PubMed Central  PubMed  Google Scholar 

  76. Fallarino F, Romani L, Puccetti P (In press) AhR: far more than an environmental sensor. Cell Cycle

  77. Dorrestein PC, Mazmanian SK, Knight R (2014) Finding the missing links among metabolites, microbes, and the host. Immunity 40:824–832. doi:10.1016/j.immuni.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  78. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703. doi:10.1073/pnas.0812874106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS (1998) Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37:11508–11515. doi:10.1021/bi980087p

    Article  CAS  PubMed  Google Scholar 

  80. Lutgendorff F, Akkermans LM, Soderholm JD (2008) The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med 8:282–298

    Article  CAS  PubMed  Google Scholar 

  81. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Sjogren YM, Tomicic S, Lundberg A, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E, Jenmalm MC (2009) Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 39:1842–1851. doi:10.1111/j.1365-2222.2009.03326.x

    Article  CAS  PubMed  Google Scholar 

  83. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MR (2012) Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 209:903–911. doi:10.1084/jem.20112408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Beck JM, Young VB, Huffnagle GB (2012) The microbiome of the lung. Transl Res 160:258–266. doi:10.1016/j.trsl.2012.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Cui L, Morris A, Huang L, Beck JM, Twigg HL 3rd, von Mutius E, Ghedin E (2014) The microbiome and the lung. Ann Am Thorac Soc 11(Suppl 4):S227–S232. doi:10.1513/AnnalsATS.201402-052PL

    Article  CAS  PubMed  Google Scholar 

  86. Kousha M, Tadi R, Soubani AO (2011) Pulmonary aspergillosis: a clinical review. Eur Respir Rev 20:156–174

    Article  CAS  PubMed  Google Scholar 

  87. Mear JB, Gosset P, Kipnis E, Faure E, Dessein R, Jawhara S, Fradin C, Faure K, Poulain D, Sendid B, Guery B (2014) Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and interleukin-22-associated mucosal response. Infect Immun 82:306–315. doi:10.1128/IAI. 01085-13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ERC-2011-AdG-293714 to L. Romani. We thank Drs. Cristina Massi Benedetti for the editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigina Romani.

Additional information

This article is a contribution to the special issue on Immunopathology of Fungal Diseases - Guest Editor: Jean-Paul Latge

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romani, L., Zelante, T., Palmieri, M. et al. The cross-talk between opportunistic fungi and the mammalian host via microbiota’s metabolism. Semin Immunopathol 37, 163–171 (2015). https://doi.org/10.1007/s00281-014-0464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0464-2

Keywords

Navigation