Skip to main content
Log in

Food-induced anaphylaxis: mast cells as modulators of anaphylactic severity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

A food-induced anaphylactic reaction can occur within seconds to a few hours following exposure to the causal food allergen and often affects multiple organ systems including gastrointestinal, cutaneous, respiratory, and cardiovascular. A conundrum in the allergy field is that consumption of the same allergen can cause reactions of vastly different severity in separate individuals; one patient may experience a mild non-life-threatening reaction characterized by pruritis of lips or urticaria whereas another may experience a life-threatening reaction that involves respiratory and cardiovascular compromise leading to loss of consciousness and sometimes death. While there are tests available to determine the predictive risk value of a positive food challenge test or clinical reactivity, there is currently no reliable method to distinguish between individuals who are at risk of mild non-life-threatening versus life-threatening reaction. Recent research has significantly advanced our understanding of the involvement of immune pathways in the effector phase of food-induced anaphylaxis; a void remains regarding our understanding of the contribution of these pathways to severity of disease. In this review, we discuss mild non-life-threatening versus life-threatening food-induced anaphylaxis and factors (co-morbidities and immune activation) that predispose individuals to more severe disease. Furthermore, we summarize recent advancements in our understanding of the involvement of underlying immune pathways in systemic and food-induced anaphylaxis in mouse systems and discuss how these pathways may contribute to more severe disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, Plaut M, Cooper SF, Fenton MJ, Arshad SH, Bahna SL, Beck LA, Byrd-Bredbenner C, Camargo CA Jr, Eichenfield L, Furuta GT, Hanifin JM, Jones C, Kraft M, Levy BD, Lieberman P, Luccioli S, McCall KM, Schneider LC, Simon RA, Simons FE, Teach SJ, Yawn BP, Schwaninger JM (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126:S1–S58

    Article  PubMed  Google Scholar 

  2. Rona RJ, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E, Sigurdardottir ST, Lindner T, Goldhahn K, Dahlstrom J, McBride D, Madsen C (2007) The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 120:638–646

    Article  PubMed  Google Scholar 

  3. Sicherer SH (2011) Epidemiology of food allergy. J Allergy Clin Immunol 127:594–602

    Article  PubMed  Google Scholar 

  4. Branum AM, Lukacs SL (2009) Food allergy among children in the United States. Pediatrics 124:1549–1555

    Article  PubMed  Google Scholar 

  5. Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA (2010) US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 125:1322–1326

    Article  PubMed  CAS  Google Scholar 

  6. Ben-Shoshan M, Kagan RS, Alizadehfar R, Joseph L, Turnbull E, St Pierre Y, Clarke AE (2009) Is the prevalence of peanut allergy increasing? A 5-year follow-up study in children in Montreal. J Allergy Clin Immunol 123:783–788

    Article  PubMed  Google Scholar 

  7. Hourihane JO, Aiken R, Briggs R, Gudgeon LA, Grimshaw KE, DunnGalvin A, Roberts SR (2007) The impact of government advice to pregnant mothers regarding peanut avoidance on the prevalence of peanut allergy in United Kingdom children at school entry. J Allergy Clin Immunol 119:1197–1202

    Article  PubMed  Google Scholar 

  8. Liu AH, Jaramillo R, Sicherer SH, Wood RA, Bock SA, Burks AW, Massing M, Cohn RD, Zeldin DC (2010) National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol 126(798–806):e13

    PubMed  Google Scholar 

  9. Nicolaou N, Poorafshar M, Murray C, Simpson A, Winell H, Kerry G, Harlin A, Woodcock A, Ahlstedt S, Custovic A (2010) Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol 125(191–7):e1–e13

    PubMed  Google Scholar 

  10. Sampson HA (2003) Anaphylaxis and emergency treatment. Pediatrics 111:1601–1608

    PubMed  Google Scholar 

  11. Ross MP, Ferguson M, Street D, Klontz K, Schroeder T, Luccioli S (2008) Analysis of food-allergic and anaphylactic events in the national electronic injury surveillance system. J Allergy Clin Immunol 121:166–171

    Article  PubMed  Google Scholar 

  12. De Smit V, Cameron PA, Rainer TH (2005) Anaphylaxis presentations to an emergency department in Hong Kong: incidence and predictors of biphasic reactions. J Emerg Med 28:381–388

    Article  PubMed  Google Scholar 

  13. Brown AF, McKinnon D, Chu K (2001) Emergency department anaphylaxis: a review of 142 patients in a single year. J Allergy Clin Immunol 108:861–866

    Article  PubMed  CAS  Google Scholar 

  14. Simons ER, Chad ZH, Gold M (2004) Anaphylaxis in children: realtime reporting from a national network. In: Bienenstock J, Ring J, Togias A (eds) Allergy frontiers and futures: Proceedings of the 24th Symposium of the Collegium Internationale Allergologicum. Hogrefe and Huber Publishers, University of Michigan, 242 pages

    Google Scholar 

  15. Yocum MW, Butterfield JH, Klein JS, Volcheck GW, Schroeder DR, Silverstein MD (1999) Epidemiology of anaphylaxis in Olmsted County: a population-based study. J Allergy Clin Immunol 104:452–456

    Article  PubMed  CAS  Google Scholar 

  16. Decker WW, Campbell RL, Manivannan V, Luke A, St Sauver JL, Weaver A, Bellolio MF, Bergstralh EJ, Stead LG, Li JT (2008) The etiology and incidence of anaphylaxis in Rochester, Minnesota: a report from the Rochester Epidemiology Project. J Allergy Clin Immunol 122:1161–1165

    Article  PubMed  Google Scholar 

  17. Liew WK, Williamson E, Tang ML (2009) Anaphylaxis fatalities and admissions in Australia. J Allergy Clin Immunol 123:434–442

    Article  PubMed  Google Scholar 

  18. Poulos LM, Waters AM, Correll PK, Loblay RH, Marks GB (2007) Trends in hospitalizations for anaphylaxis, angioedema, and urticaria in Australia, 1993–1994 to 2004–2005. J Allergy Clin Immunol 120:878–884

    Article  PubMed  Google Scholar 

  19. Australia. ACfAMAi. 2005. Australian Institute of Health and Welfare Asthma Series 2. Canberra (Australia). Australian Institute of Health and Welfare. Catalog no. ACM 6.

  20. Wang J, Sampson HA (2007) Food anaphylaxis. Clin Exp Allergy 37:651–660

    Article  PubMed  CAS  Google Scholar 

  21. Sampson HA, Munoz-Furlong A, Campbell RL, Adkinson NF Jr, Bock SA, Branum A, Brown SG, Camargo CA Jr, Cydulka R, Galli SJ, Gidudu J, Gruchalla RS, Harlor AD Jr, Hepner DL, Lewis LM, Lieberman PL, Metcalfe DD, O'Connor R, Muraro A, Rudman A, Schmitt C, Scherrer D, Simons FE, Thomas S, Wood JP, Decker WW (2006) Second symposium on the definition and management of anaphylaxis: summary report–second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. Ann Emerg Med 47:373–380

    Article  PubMed  Google Scholar 

  22. Cianferoni A, Muraro A (2012) Food-induced anaphylaxis. Immunol Allergy Clin North Am 32:165–195

    Article  PubMed  Google Scholar 

  23. Lieberman P, Nicklas RA, Oppenheimer J, Kemp SF, Lang DM, Bernstein DI, Bernstein JA, Burks AW, Feldweg AM, Fink JN, Greenberger PA, Golden DB, James JM, Ledford DK, Sheffer AL, Blessing-Moore J, Cox L, Khan DA, Lang D, Portnoy JM, Randolph C, Schuller DE, Spector SL, Tilles S, Wallace D (2010) The diagnosis and management of anaphylaxis practice parameter: 2010 update. J Allergy Clin Immunol 126(477–80):e1–e42

    PubMed  Google Scholar 

  24. Sicherer SH (2003) Clinical aspects of gastrointestinal food allergy in childhood. Pediatrics 111:1609–1616

    PubMed  Google Scholar 

  25. Burks AW, Tang M, Sicherer S, Muraro A, Eigenmann PA, Ebisawa M, Fiocchi A, Chiang W, Beyer K, Wood R, Hourihane J, Jones SM, Lack G, Sampson HA (2012) ICON: food allergy. J Allergy Clin Immunol 129:906–920

    Article  PubMed  Google Scholar 

  26. Sampson HA (2000) Food anaphylaxis. Br Med Bull 56:925–935

    Article  PubMed  CAS  Google Scholar 

  27. Bock SA, Munoz-Furlong A, Sampson HA (2007) Further fatalities caused by anaphylactic reactions to food, 2001–2006. J Allergy Clin Immunol 119:1016–1018

    Article  PubMed  Google Scholar 

  28. Pumphrey RS, Gowland MH (2007) Further fatal allergic reactions to food in the United Kingdom, 1999–2006. J Allergy Clin Immunol 119:1018–1019

    Article  PubMed  Google Scholar 

  29. Pumphrey RS, Roberts IS (2000) Postmortem findings after fatal anaphylactic reactions. J Clin Pathol 53:273–276

    Article  PubMed  CAS  Google Scholar 

  30. Cianferoni A, Novembre E, Mugnaini L, Lombardi E, Bernardini R, Pucci N, Vierucci A (2001) Clinical features of acute anaphylaxis in patients admitted to a university hospital: an 11-year retrospective review (1985–1996). Ann Allergy Asthma Immunol 87:27–32

    Article  PubMed  CAS  Google Scholar 

  31. Rudders SA, Banerji A, Clark S, Camargo CA Jr (2011) Age-related differences in the clinical presentation of food-induced anaphylaxis. J Pediatr 158:326–328

    Article  PubMed  Google Scholar 

  32. Novembre E, Cianferoni A, Bernardini R, Mugnaini L, Caffarelli C, Cavagni G, Giovane A, Vierucci A (1998) Anaphylaxis in children: clinical and allergologic features. Pediatrics 101:E8

    Article  PubMed  CAS  Google Scholar 

  33. Fisher MM (1986) Clinical observations on the pathophysiology and treatment of anaphylactic cardiovascular collapse. Anaesth Intensiv Care 14:17–21

    CAS  Google Scholar 

  34. Brown SG (2005) Cardiovascular aspects of anaphylaxis: implications for treatment and diagnosis. Curr Opin Allergy Clin Immunol 5:359–364

    Article  PubMed  Google Scholar 

  35. Brown SG (2007) The pathophysiology of shock in anaphylaxis. Immunol Allergy Clin North Am 27:165–175

    Article  PubMed  Google Scholar 

  36. Braganza SC, Acworth JP, McKinnon DR, Peake JE, Brown AF (2006) Paediatric emergency department anaphylaxis: different patterns from adults. Arch Dis Child 91:159–163

    Article  PubMed  CAS  Google Scholar 

  37. Brown SG (2004) Clinical features and severity grading of anaphylaxis. J Allergy Clin Immunol 114:371–376

    Article  PubMed  Google Scholar 

  38. Golden DB, Kwiterovich KA, Kagey-Sobotka A, Lichtenstein LM (1998) Discontinuing venom immunotherapy: extended observations. J Allergy Clin Immunol 101:298–305

    Article  PubMed  CAS  Google Scholar 

  39. Mueller HL (1959) Further experiences with severe allergic reactions to insect stings. N Engl J Med 261:374–377

    Article  PubMed  CAS  Google Scholar 

  40. Mueller HL (1966) Diagnosis and treatment of insect sensitivity. J Asthma Res 3:331–333

    Article  PubMed  CAS  Google Scholar 

  41. Ring J, Messmer K (1977) Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1:466–469

    Article  PubMed  CAS  Google Scholar 

  42. Nowak-Wegrzyn A, Assa'ad AH, Bahna SL, Bock SA, Sicherer SH, Teuber SS (2009) Work Group report: oral food challenge testing. J Allergy Clin Immunol 123:S365–S383

    Article  PubMed  Google Scholar 

  43. Schrander JJ, Unsalan-Hooyan RW, Forget PP, Jansen J (1990) [51Cr]EDTA intestinal permeability in children with cow's milk tolerance. J Pediatr Gastroenterol Nutr 10:189–192

    Article  PubMed  CAS  Google Scholar 

  44. Troncone R, Caputo N, Florio G, Finelli E (1994) Increased intestinal sugar permeability after challenge in children with cow's milk allergy or intolerance. Allergy 49:142–146

    Article  PubMed  CAS  Google Scholar 

  45. Van Elburg R, Heymans HS, De MJ (1993) Effect of disodiumcromoglycate on intestinal permeability changes and clinical response during cow's milk challenge. Source (Bibliographic Citation): Pediatr Allergy Immunol 4:79–85

    Article  Google Scholar 

  46. Fau CM, Cardinale F, Fau CF, Martelli A, Fau MA, Muraro A, Fau MA, Pucci N, Fau PN, Savino F, Fau SF, Zappala D, Fau ZD, Panetta V, Panetta V (2011) Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr Allergy Immunol 22:813–819. doi:10.1111/j.399-3038.2011.01200.x

    Article  Google Scholar 

  47. Yunginger JW, Sweeney KG, Sturner WQ, Giannandrea LA, Teigland JD, Bray M, Benson PA, York JA, Biedrzycki L, Squillace DL et al (1988) Fatal food-induced anaphylaxis. JAMA 260:1450–1452

    Article  PubMed  CAS  Google Scholar 

  48. Sampson HA, Mendelson L, Rosen JP (1992) Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N Engl J Med 327:380–384

    Article  PubMed  CAS  Google Scholar 

  49. Bock SA, Munoz-Furlong A, Sampson HA (2001) Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 107:191–193

    Article  PubMed  CAS  Google Scholar 

  50. Pumphrey RS (2000) Lessons for management of anaphylaxis from a study of fatal reactions. Clin Exp Allergy 30:1144–1150

    Article  PubMed  CAS  Google Scholar 

  51. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CMM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  PubMed  CAS  Google Scholar 

  52. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD (2002) Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol 109:658–668

    Article  PubMed  CAS  Google Scholar 

  53. Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet JP (1993) Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 75:969–976

    Article  PubMed  CAS  Google Scholar 

  54. Lorentz A, Schwengberg S, Mierke C, Manns MP, Bischoff SC (1999) Human intestinal mast cells produce IL-5 in vitro upon IgE receptor cross-linking and in vivo in the course of intestinal inflammatory disease. Eur J Immunol 29:1496–1503

    Article  PubMed  CAS  Google Scholar 

  55. Santos J, Benjamin M, Yang PC, Prior T, Perdue MH (2000) Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol 278:G847–G854

    PubMed  CAS  Google Scholar 

  56. Kelefiotis D, Vakirtzi-Lemonias C (1993) In vivo responses of mouse blood cells to platelet-activating factor (PAF): role of the mediators of anaphylaxis. Agents Actions 40:150–156

    Article  PubMed  CAS  Google Scholar 

  57. Strait RT, Morris SC, Smiley K, Urban JF Jr, Finkelman FD (2003) IL-4 exacerbates anaphylaxis. J Immunol 170:3835–3842

    PubMed  CAS  Google Scholar 

  58. Stone SF, Brown SG (2012) Mediators released during human anaphylaxis. Curr Allergy Asthma Rep 12:33–41

    Article  PubMed  CAS  Google Scholar 

  59. Kemp SF, Lockey RF (2002) Anaphylaxis: a review of causes and mechanisms. J Allergy Clin Immunol 110:341–348

    Article  PubMed  CAS  Google Scholar 

  60. Peavy RD, Metcalfe DD (2008) Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol 8:310–315

    Article  PubMed  CAS  Google Scholar 

  61. Simons FE, Frew AJ, Ansotegui IJ, Bochner BS, Golden DB, Finkelman FD, Leung DY, Lotvall J, Marone G, Metcalfe DD, Muller U, Rosenwasser LJ, Sampson HA, Schwartz LB, van Hage M, Walls AF (2007) Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol 120:S2–S24

    Article  PubMed  CAS  Google Scholar 

  62. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, Simons FE, Simons KJ, Cass D, Yeung J (2008) Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 358:28–35

    Article  PubMed  CAS  Google Scholar 

  63. Nishio H, Takai S, Miyazaki M, Horiuchi H, Osawa M, Uemura K, Yoshida K, Mukaida M, Ueno Y, Suzuki K (2005) Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med 119:331–334

    Article  PubMed  Google Scholar 

  64. Walls AF (2000) The roles of neutral proteases in asthma and rhinitis. In: Busse WW, Holgate ST (eds) Asthma and rhinitis. Blackwell, Boston, pp 968–997

    Google Scholar 

  65. Buckley MG, He S, He Y, Goda S, Gelnar J, Walls AF (2006) Carboxypeptidase as a marker of mast cell heterogeneity in human tissues. J Allergy Clin Immunol 117:S85

    Article  Google Scholar 

  66. Zhou XY, Buckley MG, Lau LC, Summers C, Pumphrey RSH, Walls AF (2006) Mast cell carboxypeptidase as a new clinical marker for anaphylaxis. J Allergy Clin Immunol 117:S85

    Article  Google Scholar 

  67. McEuen AR, Buckley MG, Walls AF (2001) The development of diagnostic assays for food-induced anaphylaxis. Food Allergy Intolerance 2:105–121

    Google Scholar 

  68. Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D (1989) Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest 83:1551–1555

    Article  PubMed  CAS  Google Scholar 

  69. Lin RY, Schwartz LB, Curry A, Pesola GR, Knight RJ, Lee HS, Bakalchuk L, Tenenbaum C, Westfal RE (2000) Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J Allergy Clin Immunol 106:65–71

    Article  PubMed  CAS  Google Scholar 

  70. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445

    Article  PubMed  CAS  Google Scholar 

  71. Burks AW (2008) Factoring PAF in anaphylaxis. N Engl J Med 358:79–81

    Article  PubMed  CAS  Google Scholar 

  72. Okamoto H, Kamatani N (2008) Platelet-activating factor, PAF acetylhydrolase, and anaphylaxis. N Engl J Med 358:1516

    PubMed  CAS  Google Scholar 

  73. Ha TY, Reed ND, Crowle PK (1986) Immune response potential of mast cell-deficient W/Wv mice. Int Arch Allergy Appl Immunol 80:85–94

    Article  PubMed  CAS  Google Scholar 

  74. Dombrowicz D, Flamand V, Miyajima I, Ravetch JV, Galli SJ, Kinet JP (1997) Absence of Fc epsilonRI alpha chain results in upregulation of Fc gammaRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between Fc epsilonRI and Fc gammaRIII for limiting amounts of FcR beta and gamma chains. J Clin Invest 99:915–925

    Article  PubMed  CAS  Google Scholar 

  75. Oettgen HC, Martin TR, Wynshaw-Boris A, Deng C, Drazen JM, Leder P (1994) Active anaphylaxis in IgE-deficient mice. Nature 370:367–370

    Article  PubMed  CAS  Google Scholar 

  76. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, Galli SJ (1997) Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 99:901–914

    Article  PubMed  CAS  Google Scholar 

  77. Tsujimura Y, Obata K, Mukai K, Shindou H, Yoshida M, Nishikado H, Kawano Y, Minegishi Y, Shimizu T, Karasuyama H (2008) Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity 28:581–589

    Article  PubMed  CAS  Google Scholar 

  78. Jonsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, Shimizu T, Daeron M, Bruhns P (2011) Mouse and human neutrophils induce anaphylaxis. J Clin Invest 121:1484–1496

    Article  PubMed  Google Scholar 

  79. Khodoun MV, Strait R, Armstrong L, Yanase N, Finkelman FD (2011) Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis. Proc Natl Acad Sci U S A 108:12413–12418

    Article  PubMed  CAS  Google Scholar 

  80. Finkelman FD (2007) Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 120:506–515

    Article  PubMed  CAS  Google Scholar 

  81. Finkelman FD, Rothenberg ME, Brandt EB, Morris SC, Strait RT (2005) Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Immunol 115:449–457, quiz 58

    Article  PubMed  CAS  Google Scholar 

  82. Berin MC, Mayer L (2009) Immunopathophysiology of experimental food allergy. Mucosal Immunology 2:24–32

    Article  PubMed  CAS  Google Scholar 

  83. Wang J, Sampson HA (2011) Food allergy. J Clin Invest 121:827–835

    Article  PubMed  CAS  Google Scholar 

  84. Li XM, Schofield BH, Huang CK, Kleiner GI, Sampson HA (1999) A murine model of IgE-mediated cow's milk hypersensitivity. J Allergy Clin Immunol 103:206–214

    Article  PubMed  CAS  Google Scholar 

  85. Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, Stanley JS, Burks AW, Bannon GA, Sampson HA (2000) A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol 106:150–158

    Article  PubMed  CAS  Google Scholar 

  86. Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA, Zimmermann N, Finkelman FD, Rothenberg ME (2003) Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 112:1666–1677

    PubMed  CAS  Google Scholar 

  87. Birmingham NP, Parvataneni S, Hassan HM, Harkema J, Samineni S, Navuluri L, Kelly CJ, Gangur V (2007) An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut. Int Arch Allergy Immunol 144:203–210

    Article  PubMed  CAS  Google Scholar 

  88. Parvataneni S, Gonipeta B, Tempelman RJ, Gangur V (2009) Development of an adjuvant-free cashew nut allergy mouse model. Int Arch Allergy Immunol 149:299–304

    Article  PubMed  CAS  Google Scholar 

  89. Osterfeld H, Ahrens R, Strait R, Finkelman FD, Renauld JC, Hogan SP (2010) Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J Allergy Clin Immunol 125(469–76):e2

    PubMed  Google Scholar 

  90. Ahrens R, Osterfeld H, Wu D, Chen C-Y, Groschwitz K, Arumugam M, Strait R, Wang YH, Finkelman FD, Hogan SP (2012) Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am J Pathol 180:1535–1546

    Article  PubMed  CAS  Google Scholar 

  91. Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ (2009) Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J Allergy Clin Immunol 123:231–238

    Article  PubMed  CAS  Google Scholar 

  92. Forbes EE, Groschwitz K, Abonia JP, Brandt EB, Cohen E, Blanchard C, Ahrens R, Seidu L, McKenzie A, Strait R, Finkelman FD, Foster PS, Matthaei KI, Rothenberg ME, Hogan SP (2008) IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 205:897–913

    Article  PubMed  CAS  Google Scholar 

  93. Wills-Karp M (1999) Immunologic basis of antigen-induced airway hyperresponsiveness. Ann Rev Immunol 17:255–281

    Article  CAS  Google Scholar 

  94. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261

    Article  PubMed  CAS  Google Scholar 

  95. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–2263

    Article  PubMed  CAS  Google Scholar 

  96. Gavett SH, O'Hearn DJ, Karp CL, Patel EA, Schofield BH, Finkelman FD, Wills-Karp M (1997) Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol 272:L253–L261

    PubMed  CAS  Google Scholar 

  97. James JM, Eigenmann PA, Eggleston PA, Sampson HA (1996) Airway reactivity changes in asthmatic patients undergoing blinded food challenges. Am J Respir Crit Care Med 153:597–603

    PubMed  CAS  Google Scholar 

  98. James JM, Bernhisel-Broadbent J, Sampson HA (1994) Respiratory reactions provoked by double-blind food challenges in children. Am J Respir Crit Care Med 149:59–64

    PubMed  CAS  Google Scholar 

  99. Strait RT, Morris SC, Finkelman FD (2006) IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and Fc gamma RIIb cross-linking. J Clin Invest 116:833–841

    Article  PubMed  CAS  Google Scholar 

  100. Kemp SF, Lockey RF (2011) Pathophysiology and organ damage in anaphylaxis. In: Castells MA (ed) Anaphylaxis and hypersensivity reactions. Springer, New York, p 33

    Chapter  Google Scholar 

  101. Sampson HA, Munoz-Furlong A, Bock SA, Schmitt C, Bass R, Chowdhury BA, Decker WW, Furlong TJ, Galli SJ, Golden DB, Gruchalla RS, Harlor AD Jr, Hepner DL, Howarth M, Kaplan AP, Levy JH, Lewis LM, Lieberman PL, Metcalfe DD, Murphy R, Pollart SM, Pumphrey RS, Rosenwasser LJ, Simons FE, Wood JP, Camargo CA Jr (2005) Symposium on the definition and management of anaphylaxis: summary report. J Allergy Clin Immunol 115:584–591

    Article  PubMed  Google Scholar 

  102. Silverman HJ, Van Hook C, Haponik EF (1984) Hemodynamic changes in human anaphylaxis. Am J Med 77:341–344

    Article  PubMed  CAS  Google Scholar 

  103. James LP, Austen KF (1964) Fatal systemic anaphylaxis in man. N Engl J Med 270:597–603

    Article  PubMed  Google Scholar 

  104. Black JH, Kemp HA (1937) Blood density in anaphylaxis in hay fever artificially induced. Am J Clin Pathol 7:300

    Google Scholar 

  105. Sonin L, Grammer LC, Greenberger PA, Patterson R (1983) Idiopathic anaphylaxis. A clinical summary. Annals Intern Med 99:634–635

    CAS  Google Scholar 

  106. Munoz J, Bergman RK (1965) Mechanism of anaphylactic death in the mouse. Nature 205:199–200

    Article  PubMed  CAS  Google Scholar 

  107. Bergmann RK, Munoz J (1965) Circulatory chnages in anaphylaxis and histamine toxicity in mice. J Immunol 95:1–8

    Google Scholar 

  108. Fulton JD, Harris WE, Craft CE (1957) Hematocrit chnage as indication of anaphyactic shock in the mouse. Proc Soc Exp Biol Med 95:625–627

    PubMed  CAS  Google Scholar 

  109. Kind LS (1955) Fall in rectal temperature as an indication of anaphylactic shock in the mouse. J Immunol 74:387–390

    PubMed  CAS  Google Scholar 

  110. Brandt EB, Strait RT, Wang Q, Hersko D, Muntel E, Finkelman FD, Rothenberg ME (2003) Oral antigen-induced intestinal anaphylaxis requires IgE-dependent mast cell degranulation. J Allergy Clin Immunol 111:S339

    Article  Google Scholar 

  111. Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, Niihara H, Hide M, Morita E (2005) Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy 35:461–466

    Article  PubMed  CAS  Google Scholar 

  112. Lambert GP, Broussard LJ, Mason BL, Mauermann WJ, Gisolfi CV (2001) Gastrointestinal permeability during excercise: effects of aspirin and energy-containing beverages. J Appl Physiol 90:2075–2080

    PubMed  CAS  Google Scholar 

  113. Ryan AJ, Chang RT, Gisolfi CV (1996) Gastrointestinal permeability following aspirin intake and prolonged running. Med Sci Sports Exerc 28:698–705

    PubMed  CAS  Google Scholar 

  114. Bengtsson U, Rognum TP, Brandtzaeg P, Kilander A, Hansson G, Ahlstedt S, Hanson LA (1991) IgE-positive duodenal mast cells in patients with food-related diarrhea. Int Arch Allergy Appl Immunol 95:86–91

    Article  PubMed  CAS  Google Scholar 

  115. Caffarelli C, Romanini E, Caruana P, Street ME, dé Angelis G (1998) Clinical food hypersensitivity: the relevance of duodenal immunoglobulin E-positive cells. Pediatr Res 44:485–490

    Article  PubMed  CAS  Google Scholar 

  116. Lillestol K, GHeldeland L, Arslan LG, Florvaag E, Valeur J, Lind R, Berstad A (2010) Indications of atopic bowel in patients with self-reported food hypersensitivity. Aliment Pharmacol Ther 31:1112–1122

    PubMed  CAS  Google Scholar 

  117. Weidner N, Austen KF (1993) Heterogeneity of mast cells at multiple body sites. Path Res Pract 189:156–162

    Article  PubMed  CAS  Google Scholar 

  118. Nolte H, Schiotz PO, Kruse A, Stahl SP (1989) Comparison of intestinal mast cell and basophil histamine release in children with food allergic reactions. Allergy 44:554–565

    Article  PubMed  CAS  Google Scholar 

  119. Akin C, Metcalfe DD (2004) Systemic mastocytosis. Annu Rev Med 55:419–432

    Article  PubMed  CAS  Google Scholar 

  120. Cherner JA, Jensen RT, Dubois A, O'Dorisio TM, Gardner JD, Metcalfe DD (1988) Gastrointestinal dysfunction in systemic mastocytosis. A prospective study. Gastroenterol 95:657–667

    CAS  Google Scholar 

  121. Soter NA, Austen KF, Wasserman SI (1979) Oral disodium cromoglycate in the treatment of systemic mastocytosis. N Engl J Med 301:465–469

    Article  PubMed  CAS  Google Scholar 

  122. Horan RF, Sheffer AL, Austen KF (1990) Cromolyn sodium in the management of systemic mastocytosis. J Allergy Clin Immunol 85:852–855

    Article  PubMed  CAS  Google Scholar 

  123. Brockow K, Jofer C, Behrendt H, Ring J (2008) Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy 63:226–232

    Article  PubMed  CAS  Google Scholar 

  124. Gonzalez de Olano D, de la Hoz CB, Nunez Lopez R, Sanchez Munoz L, Cuevas Agustin M, Dieguez MC, Alvarez Twose I, Castells MC, Escribano ML (2007) Prevalence of allergy and anaphylactic symptoms in 210 adult and pediatric patients with mastocytosis in Spain: a study of the Spanish network on mastocytosis (REMA). Clin Exp Allergy 37:1547–1555

    PubMed  CAS  Google Scholar 

  125. Muller U, Haeberli G (2009) The problem of anaphylaxis and mastocytosis. Curr Allergy Asthma Rep 9:64–70

    Article  PubMed  Google Scholar 

  126. Groschwitz KR, Ahrens R, Osterfeld H, Gurish MF, Han X, Abrink M, Finkelman FD, Pejler G, Hogan SP (2009) Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc Natl Acad Sci U S A 106:22381–22386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Pablo Abonia, Amal Asaad, and Marc Rothenberg for helpful discussions and Shawna Hottinger for editorial assistance. This work was supported in part by NIH R01AI073553-01 (S.P.H), NIH P30DK078392 (R.S), and a VA Merit Award (F.D.F). The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. Hogan.

Additional information

This article is published as part of the Special Issue on Food Allergy [34:6]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, S.P., Wang, Y.H., Strait, R. et al. Food-induced anaphylaxis: mast cells as modulators of anaphylactic severity. Semin Immunopathol 34, 643–653 (2012). https://doi.org/10.1007/s00281-012-0320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0320-1

Keywords

Navigation