Skip to main content

Advertisement

Log in

Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Careful regulation of the body’s immunoglobulin-G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn) which, as a single receptor, is capable of regulating both of these molecules, has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a host of other functions that are equally as critical. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body. This shuttling allows for the movement not only of monomeric ligand but also of antigen/antibody complexes from one cell type to another in such a way as to facilitate the efficient initiation of immune responses towards opsonized pathogens. As such, FcRn continues to play the role of an immunological sensor throughout adult life, particularly in regions such as the gut which are exposed to a large number of infectious antigens. Increasing appreciation for the contributions of FcRn to both homeostatic and pathological states is generating an intense interest in the potential for therapeutic modulation of FcRn binding. A greater understanding of FcRn’s pleiotropic roles is thus imperative for a variety of therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725. doi:10.1038/nri2155

    Article  CAS  PubMed  Google Scholar 

  2. Brambell FWR (1966) The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet 288:1087–1093. doi:10.1016/S0140-6736(66)92190-8

    Article  Google Scholar 

  3. Brambell FWR, Halliday R, Morris IG (1958) Interference by human and bovine serum and serum protein fractions with the absorption of antibodies by suckling rats and mice. Proc R Soc Lond B Biol Sci 149:1–11. doi:10.1098/rspb.1958.0046

    Article  CAS  PubMed  Google Scholar 

  4. Rodewald R (1976) pH-Dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71:666–669. doi:10.1083/jcb.71.2.666

    Article  CAS  PubMed  Google Scholar 

  5. Rodewald R, Kraehenbuhl JP (1984) Receptor-mediated transport of IgG. J Cell Biol 99:159s–164. doi:10.1083/jcb.99.1.159s

    Article  CAS  PubMed  Google Scholar 

  6. Simister NE, Rees AR (1985) Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 15:733–738. doi:10.1002/eji.1830150718

    Article  CAS  PubMed  Google Scholar 

  7. Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187. doi:10.1038/337184a0

    Article  CAS  PubMed  Google Scholar 

  8. Simister NE, Mostov KE (1989) Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54(Pt 1):571–580

    CAS  PubMed  Google Scholar 

  9. Martin WL, West AP Jr, Gan L, Bjorkman PJ (2001) Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 7:867–877. doi:10.1016/S1097-2765(01)00230-1

    Article  CAS  PubMed  Google Scholar 

  10. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ (1994) Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 372:336–343. doi:10.1038/372336a0

    Article  CAS  PubMed  Google Scholar 

  11. Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383. doi:10.1038/372379a0

    Article  CAS  PubMed  Google Scholar 

  12. Claypool SM, Dickinson BL, Yoshida M, Lencer WI, Blumberg RS (2002) Functional reconstitution of human FcRn in Madin–Darby canine kidney cells requires co-expressed human beta 2-microglobulin. J Biol Chem 277:28038–28050. doi:10.1074/jbc.M202367200

    Article  CAS  PubMed  Google Scholar 

  13. Praetor A, Hunziker W (2002) beta(2)-Microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J Cell Sci 115:2389–2397

    CAS  PubMed  Google Scholar 

  14. Kandil E, Egashira M, Miyoshi O, Niikawa N, Ishibashi T, Kasahara M (1996) The human gene encoding the heavy chain of the major histocompatibility complex class I-like Fc receptor (FCGRT) maps to 19q13.3. Cytogenet Cell Genet 73:97–98. doi:10.1159/000134316

    Article  CAS  PubMed  Google Scholar 

  15. Ahouse JJ, Hagerman CL, Mittal P, Gilbert DJ, Copeland NG, Jenkins NA, Simister NE (1993) Mouse MHC class I-like Fc receptor encoded outside the MHC. J Immunol 151:6076–6088

    CAS  PubMed  Google Scholar 

  16. Simister NE, Ahouse JC (1996) The structure and evolution of FcRn. Res Immunol 147:333–337. doi:10.1016/0923-2494(96)89647-7 discussion 353

    Article  CAS  PubMed  Google Scholar 

  17. West AP Jr, Bjorkman PJ (2000) Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). Biochemistry 39:9698–9708. doi:10.1021/bi000749m

    Article  CAS  PubMed  Google Scholar 

  18. Kacskovics I, Wu Z, Simister NE, Frenyo LV, Hammarstrom L (2000) Cloning and characterization of the bovine MHC class I-like Fc receptor. J Immunol 164:1889–1897

    CAS  PubMed  Google Scholar 

  19. Kuo TT, de Muinck EJ, Claypool SM, Yoshida M, Nagaishi T, Aveson VG, Lencer WI, Blumberg RS (2009) N-glycan moieties in FcRn determine steady-state membrane distribution and directional transport of IgG. J Biol Chem: M805877200. doi:10.1074/jbc.M805877200.

  20. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559. doi:10.1093/intimm/13.12.1551

    Article  CAS  PubMed  Google Scholar 

  21. Mikulska JE, Simister NE (2000) Analysis of the promoter region of the human FcRn gene. Biochim Biophys Acta 1492:180–184

    CAS  PubMed  Google Scholar 

  22. Tiwari B, Junghans RP (2005) Functional analysis of the mouse Fcgrt 5′ proximal promoter. Biochim Biophys Acta 1681:88–98

    CAS  PubMed  Google Scholar 

  23. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol 157:3317–3322

    CAS  PubMed  Google Scholar 

  24. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M (2001) Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62:93–105. doi:10.1016/S0198-8859(00)00244-5

    Article  CAS  PubMed  Google Scholar 

  25. Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES (2004) Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol 172:2021–2029

    CAS  PubMed  Google Scholar 

  26. Sakagami M, Omidi Y, Campbell L, Kandalaft LE, Morris CJ, Barar J, Gumbleton M (2006) Expression and transport functionality of FcRn within rat alveolar epithelium: a study in primary cell culture and in the isolated perfused lung. Pharm Res 23:270–279. doi:10.1007/s11095-005-9226-0

    Article  CAS  PubMed  Google Scholar 

  27. Cianga P, Cianga C, Cozma L, Ward ES, Carasevici E (2003) The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum Immunol 64:1152–1159. doi:10.1016/j.humimm.2003.08.025

    Article  CAS  PubMed  Google Scholar 

  28. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci USA 105:967–972. doi:10.1073/pnas.0711515105

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, Lencer WI, Blumberg RS (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783. doi:10.1016/j.immuni.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, Wang Y, Robert C, Wu B, Smith PD, Lencer WI, Blumberg RS (2001) MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 166:3266–3276

    CAS  PubMed  Google Scholar 

  31. Mi W, Wanjie S, Lo ST, Gan Z, Pickl-Herk B, Ober RJ, Ward ES (2008) Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments. J Immunol 181:7550–7561

    CAS  PubMed  Google Scholar 

  32. Martin WL, Bjorkman PJ (1999) Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry 38:12639–12647. doi:10.1021/bi9913505

    Article  CAS  PubMed  Google Scholar 

  33. Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS, Lencer WI (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196:303–310. doi:10.1084/jem.20020400

    Article  CAS  PubMed  Google Scholar 

  34. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34:14649–14657. doi:10.1021/bi00045a005

    Article  CAS  PubMed  Google Scholar 

  35. Raghavan M, Gastinel LN, Bjorkman PJ (1993) The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32:8654–8660. doi:10.1021/bi00084a037

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL (2006) Albumin binding to FcRn: distinct from the FcRn–IgG interaction. Biochemistry 45:4983–4990. doi:10.1021/bi052628y

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197:315–322. doi:10.1084/jem.20021829

    Article  CAS  PubMed  Google Scholar 

  38. Berryman M, Rodewald R (1995) Beta 2-microglobulin co-distributes with the heavy chain of the intestinal IgG-Fc receptor throughout the transepithelial transport pathway of the neonatal rat. J Cell Sci 108:2347–2360

    CAS  PubMed  Google Scholar 

  39. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS, Lencer WI (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104:903–911. doi:10.1172/JCI6968

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X, Peng J, Raychowdhury R, Nakajima A, Lencer WI, Blumberg RS (2002) The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of beta2-microglobulin association. Biochem J 367:703–714. doi:10.1042/BJ20020200

    Article  CAS  PubMed  Google Scholar 

  41. Zhu X, Peng J, Chen D, Liu X, Ye L, Iijima H, Kadavil K, Lencer WI, Blumberg RS (2005) Calnexin and ERp57 facilitate the assembly of the neonatal Fc receptor for IgG with beta 2-microglobulin in the endoplasmic reticulum. J Immunol 175:967–976

    CAS  PubMed  Google Scholar 

  42. Claypool SM, Dickinson BL, Wagner JS, Johansen FE, Venu N, Borawski JA, Lencer WI, Blumberg RS (2004) Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor. Mol Biol Cell 15:1746–1759. doi:10.1091/mbc.E03-11-0832

    Article  CAS  PubMed  Google Scholar 

  43. Shah U, Dickinson BL, Blumberg RS, Simister NE, Lencer WI, Walker WA (2003) Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res 53:295–301

    CAS  PubMed  Google Scholar 

  44. McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE (2001) Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114:1591–1598

    CAS  PubMed  Google Scholar 

  45. McCarthy KM, Yoong Y, Simister NE (2000) Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci 113(Pt 7):1277–1285

    CAS  PubMed  Google Scholar 

  46. Newton EE, Wu Z, Simister NE (2005) Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci 118:2461–2469. doi:10.1242/jcs.02367

    Article  CAS  PubMed  Google Scholar 

  47. Wernick NL, Haucke V, Simister NE (2005) Recognition of the tryptophan-based endocytosis signal in the neonatal Fc receptor by the mu subunit of adaptor protein-2. J Biol Chem 280:7309–7316. doi:10.1074/jbc.M410752200

    Article  CAS  PubMed  Google Scholar 

  48. Wu Z, Simister NE (2001) Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem 276:5240–5247. doi:10.1074/jbc.M006684200

    Article  CAS  PubMed  Google Scholar 

  49. Dickinson BL, Claypool SM, D’Angelo JA, Aiken ML, Venu N, Yen EH, Wagner JS, Borawski JA, Pierce AT, Hershberg R, Blumberg RS, Lencer WI (2008) Ca2+ -dependent calmodulin binding to FcRn affects immunoglobulin G transport in the transcytotic pathway. Mol Biol Cell 19:414–423. doi:10.1091/mbc.E07-07-0658

    Article  CAS  PubMed  Google Scholar 

  50. Tzaban S, Massol RH, Yen E, Hamman W, Frank SR, Lapierre LA, Hansen SH, Goldenring JR, Blumberg RS, Lencer WI (2009) The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol 185:673–684

    Article  CAS  PubMed  Google Scholar 

  51. Ward ES, Martinez C, Vaccaro C, Zhou J, Tang Q, Ober RJ (2005) From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 16:2028–2038. doi:10.1091/mbc.E04-08-0735

    Article  CAS  PubMed  Google Scholar 

  52. He W, Ladinsky MS, Huey-Tubman KE, Jensen GJ, McIntosh JR, Bjorkman PJ (2008) FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455:542–546. doi:10.1038/nature07255

    Article  CAS  PubMed  Google Scholar 

  53. Ober RJ, Martinez C, Lai X, Zhou J, Ward ES (2004) Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci USA 101:11076–11081. doi:10.1073/pnas.0402970101

    Article  CAS  PubMed  Google Scholar 

  54. Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15:5–9. doi:10.1016/j.tcb.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  55. Qiao SW, Kobayashi K, Johansen FE, Sollid LM, Andersen JT, Milford E, Roopenian DC, Lencer WI, Blumberg RS (2008) Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci USA 105:9337–9342. doi:10.1073/pnas.0801717105

    Article  CAS  PubMed  Google Scholar 

  56. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533

    CAS  PubMed  Google Scholar 

  57. Kim J, Bronson CL, Hayton WL, Radmacher MD, Roopenian DC, Robinson JM, Anderson CL (2006) Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol 290:G352–G360. doi:10.1152/ajpgi.00286.2005

    Article  CAS  PubMed  Google Scholar 

  58. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S (2006) Perspective—FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27:343–348. doi:10.1016/j.it.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  59. Akilesh S, Christianson GJ, Roopenian DC, Shaw AS (2007) Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol 179:4580–4588

    CAS  PubMed  Google Scholar 

  60. Qiao SW, Lencer WI, Blumberg RS (2007) How the controller is controlled — neonatal Fc receptor expression and immunoglobulin G homeostasis. Immunology 120:145–147. doi:10.1111/j.1365-2567.2006.02507.x

    Article  CAS  PubMed  Google Scholar 

  61. Montoyo HcPr Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES (2009) Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci 106:2788–2793

    Article  Google Scholar 

  62. Yoshida M, Masuda A, Kuo TT, Kobayashi K, Claypool SM, Takagawa T, Kutsumi H, Azuma T, Lencer WI, Blumberg RS (2006) IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity. Springer Semin Immunopathol 28:397–403. doi:10.1007/s00281-006-0054-z

    Article  CAS  PubMed  Google Scholar 

  63. Kim J, Bronson CL, Wani MA, Oberyszyn TM, Mohanty S, Chaudhury C, Hayton WL, Robinson JM, Anderson CL (2008) Beta 2-microglobulin deficient mice catabolize IgG more rapidly than FcRn- alpha-chain deficient mice. Exp Biol Med (Maywood) 233:603–609. doi:10.3181/0710-RM-270

    Article  CAS  Google Scholar 

  64. Waldmann TA, Terry WD (1990) Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest 86:2093–2098. doi:10.1172/JCI114947

    Article  CAS  PubMed  Google Scholar 

  65. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, Waldmann TA, Robinson JM, Anderson CL (2006) Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA 103:5084–5089. doi:10.1073/pnas.0600548103

    Article  CAS  PubMed  Google Scholar 

  66. Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21:3365–3369. doi:10.1016/S0264-410X(03)00334-7

    Article  CAS  PubMed  Google Scholar 

  67. Firan M, Bawdon R, Radu C, Ober RJ, Eaken D, Antohe F, Ghetie V, Ward ES (2001) The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol 13:993–1002. doi:10.1093/intimm/13.8.993

    Article  CAS  PubMed  Google Scholar 

  68. Kim J, Mohanty S, Ganesan LP, Hua K, Jarjoura D, Hayton WL, Robinson JM, Anderson CL (2009) FcRn in the yolk sac endoderm of mouse is required for igg transport to fetus. J Immunol 182:2583–2589. doi:10.4049/jimmunol.0803247

    Article  CAS  PubMed  Google Scholar 

  69. Petru Cianga CMJARVGESW (1999) Identification and function of neonatal Fc receptor in mammary gland of lactating mice. Eur J Immunol 29:2515–2523. doi:10.1002/(SICI)1521-4141(199908)29:08<2515::AID-IMMU2515>3.0.CO;2-D

    Article  Google Scholar 

  70. Lu W, Zhao Z, Zhao Y, Yu S, Zhao Y, Fan B, Kacskovics I, Hammarstrom L, Li N (2007) Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology 122:401–408. doi:10.1111/j.1365-2567.2007.02654.x

    Article  CAS  PubMed  Google Scholar 

  71. Jones EA, Waldmann TA (1972) The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 51:2916–2927. doi:10.1172/JCI107116

    Article  CAS  PubMed  Google Scholar 

  72. Stirling CM, Charleston B, Takamatsu H, Claypool S, Lencer W, Blumberg RS, Wileman TE (2005) Characterization of the porcine neonatal Fc receptor—potential use for trans-epithelial protein delivery. Immunology 114:542–553. doi:10.1111/j.1365-2567.2004.02121.x

    Article  CAS  PubMed  Google Scholar 

  73. Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP (1997) Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 65:1387–1394

    CAS  PubMed  Google Scholar 

  74. Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3:944–955. doi:10.1038/nrm972

    Article  CAS  PubMed  Google Scholar 

  75. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22. doi:10.1038/mi.2007.6

    Article  CAS  PubMed  Google Scholar 

  76. Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–1178. doi:10.1038/ni1526

    Article  CAS  PubMed  Google Scholar 

  77. Bry L, Brenner MB (2004) Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172:433–441

    CAS  PubMed  Google Scholar 

  78. Bitonti AJ, Dumont JA (2006) Pulmonary administration of therapeutic proteins using an immunoglobulin transport pathway. Adv Drug Deliv Rev 58:1106–1118. doi:10.1016/j.addr.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  79. Mayer B, Kis Z, Kajan G, Frenyo LV, Hammarstrom L, Kacskovics I (2004) The neonatal Fc receptor (FcRn) is expressed in the bovine lung. Vet Immunol Immunopathol 98:85–89. doi:10.1016/j.vetimm.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  80. Kim KJ, Fandy TE, Lee VH, Ann DK, Borok Z, Crandall ED (2004) Net absorption of IgG via FcRn-mediated transcytosis across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 287:L616–L622. doi:10.1152/ajplung.00121.2004

    Article  CAS  PubMed  Google Scholar 

  81. Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM, Zlokovic BV (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood–brain barrier neonatal Fc receptor. J Neurosci 25:11495–11503. doi:10.1523/JNEUROSCI.3697-05.2005

    Article  CAS  PubMed  Google Scholar 

  82. Schlachetzki F, Zhu C, Pardridge WM (2002) Expression of the neonatal Fc receptor (FcRn) at the blood–brain barrier. J Neurochem 81:203–206. doi:10.1046/j.1471-4159.2002.00840.x

    Article  CAS  PubMed  Google Scholar 

  83. Kim H, Fariss RN, Zhang C, Robinson SB, Thill M, Csaky KG (2008) Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci 49:2025–2029. doi:10.1167/iovs.07-0871

    Article  PubMed  Google Scholar 

  84. Ye L, Liu X, Rout SN, Li Z, Yan Y, Lu L, Kamala T, Nanda NK, Song W, Samal SK, Zhu X (2008) The MHC class II-associated invariant chain interacts with the neonatal Fc gamma receptor and modulates its trafficking to endosomal/lysosomal compartments. J Immunol 181:2572–2585

    CAS  PubMed  Google Scholar 

  85. Mueller C, Macpherson AJ (2006) Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55:276–284. doi:10.1136/gut.2004.054098

    Article  CAS  PubMed  Google Scholar 

  86. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12:129–134. doi:10.1016/j.tim.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  87. Rescigno M (2008) The pathogenic role of intestinal flora in IBD and colon cancer. Curr Drug Targets 9:395–403. doi:10.2174/138945008784221125

    Article  CAS  PubMed  Google Scholar 

  88. Kelsall BL, Leon F (2005) Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev 206:132–148. doi:10.1111/j.0105-2896.2005.00292.x

    Article  CAS  PubMed  Google Scholar 

  89. Bossuyt X (2006) Serologic markers in inflammatory bowel disease. Clin Chem 52:171–181. doi:10.1373/clinchem.2005.058560

    Article  CAS  PubMed  Google Scholar 

  90. Adams RJ, Heazlewood SP, Gilshenan KS, O’Brien M, McGuckin MA, Florin TH (2008) IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. Am J Gastroenterol 103:386–396. doi:10.1111/j.1572-0241.2007.01577.x

    Article  PubMed  Google Scholar 

  91. Furrie E, Macfarlane S, Cummings JH, Macfarlane GT (2004) Systemic antibodies towards mucosal bacteria in ulcerative colitis and Crohn’s disease differentially activate the innate immune response. Gut 53:91–98. doi:10.1136/gut.53.1.91

    Article  CAS  PubMed  Google Scholar 

  92. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, Fort M, Hershberg RM (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113:1296–1306

    CAS  PubMed  Google Scholar 

  93. Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale D, Rognum TO, Scott H, Sollid LM (1989) Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97:1562–1584

    CAS  PubMed  Google Scholar 

  94. Kobayashi K, Qiao SW, Yoshida M, Baker K, Lencer WI, Blumberg RS (2009) FcRn-dependent pathogenic role of anti-flagellin antibody in an IgG-mediated colitis mouse model. Gastroenterology (in press)

  95. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533. doi:10.1146/annurev.immunol.26.021607.090232

    Article  CAS  PubMed  Google Scholar 

  96. Clynes R (2007) Protective mechanisms of IVIG. Curr Opin Immunol 19:646–651. doi:10.1016/j.coi.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  97. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, Keller S, Tang MT, Tso JY, Vasquez M, Tsurushita N (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279:6213–6216. doi:10.1074/jbc.C300470200

    Article  CAS  PubMed  Google Scholar 

  98. Vaccaro C, Zhou J, Ober RJ, Ward ES (2005) Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23:1283–1288. doi:10.1038/nbt1143

    Article  CAS  PubMed  Google Scholar 

  99. Mezo AR, McDonnell KA, Castro A, Fraley C (2008) Structure–activity relationships of a peptide inhibitor of the human FcRn:human IgG interaction. Bioorg Med Chem 16:6394–6405. doi:10.1016/j.bmc.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  100. Mezo AR, McDonnell KA, Hehir CA, Low SC, Palombella VJ, Stattel JM, Kamphaus GD, Fraley C, Zhang Y, Dumont JA, Bitonti AJ (2008) Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA 105:2337–2342. doi:10.1073/pnas.0708960105

    Article  CAS  PubMed  Google Scholar 

  101. Jaggi JS, Carrasquillo JA, Seshan SV, Zanzonico P, Henke E, Nagel A, Schwartz J, Beattie B, Kappel BJ, Chattopadhyay D, Xiao J, Sgouros G, Larson SM, Scheinberg DA (2007) Improved tumor imaging and therapy via i.v. IgG-mediated time-sequential modulation of neonatal Fc receptor. J Clin Invest 117:2422–2430. doi:10.1172/JCI32226

    Article  CAS  PubMed  Google Scholar 

  102. Sesarman A, Sitaru AG, Olaru F, Zillikens D, Sitaru C (2008) Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita. J Mol Med 86:951–959. doi:10.1007/s00109-008-0366-7

    Article  CAS  PubMed  Google Scholar 

  103. Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, Bitonti A (2007) Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol 178:5390–5398

    CAS  PubMed  Google Scholar 

  104. Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D (2004) The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 113:1328–1333

    PubMed  Google Scholar 

  105. Zhou J, Pop LM, Ghetie V (2005) Hypercatabolism of IgG in mice with lupus-like syndrome. Lupus 14:458–466. doi:10.1191/0961203305lu2129oa

    Article  CAS  PubMed  Google Scholar 

  106. Andersen JT, Justesen S, Berntzen G, Michaelsen TE, Lauvrak V, Fleckenstein B, Buus S, Sandlie I (2008) A strategy for bacterial production of a soluble functional human neonatal Fc receptor. J Immunol Methods 331:39–49

    CAS  PubMed  Google Scholar 

  107. Andersen JT, Justesen S, Fleckenstein B, Michaelsen TE, Berntzen G, Kenanova VE, Daba MB, Lauvrak V, Buus S, Sandlie I (2008) Ligand binding and antigenic properties of a human neonatal Fc receptor with mutation of two unpaired cysteine residues. FEBS J 275:4097–4110. doi:10.1111/j.1742-4658.2008.06551.x

    Article  CAS  PubMed  Google Scholar 

  108. Bitonti AJ, Dumont JA, Low SC, Peters RT, Kropp KE, Palombella VJ, Stattel JM, Lu Y, Tan CA, Song JJ, Garcia AM, Simister NE, Spiekermann GM, Lencer WI, Blumberg RS (2004) Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci USA 101:9763–9768. doi:10.1073/pnas.0403235101

    Article  CAS  PubMed  Google Scholar 

  109. Dumont JA, Bitonti AJ, Clark D, Evans S, Pickford M, Newman SP (2005) Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J Aerosol Med 18:294–303. doi:10.1089/jam.2005.18.294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (K.B.); the National Institutes of Health Grants DK53056 (W.I.L. and R.S.B.); and the Harvard Digestive Disease Center (National Institutes of Health Grant DK34854; W.I.L. and R.S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Blumberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, K., Qiao, SW., Kuo, T. et al. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol 31, 223–236 (2009). https://doi.org/10.1007/s00281-009-0160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0160-9

Keywords

Navigation