Skip to main content

Advertisement

Log in

FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of FSTL1-mediated NF-κB signaling pathway on cisplatin (DDP) sensitivity of EOC cells.

Methods

FSTL1 expression was determined in epithelial ovarian cancer (EOC) tissues and corresponding adjacent tissues using immunohistochemistry. SKOV3 and SKOV3/DDP cells were transfected and grouped into Blank, Vector, and FSTL1 groups. The sensitivity and 50% inhibitory concentration (IC50) of cells treated with different concentrations of DDP were detected by MTT assay. SKOV3/DDP cells were treated with 20 μM DDP, followed by evaluation of cell proliferation, cell apoptosis and determination of NF-κB pathway-related proteins while SKOV3 cells without.

Results

FSTL1 expression in EOC tissues and cells was significantly down-regulated, especially decreased in DDP-resistant EOC cells SKOV3/DDP. In SKOV3 cells and SKOV3/DDP cells, the cell viability was reduced and the DDP sensitivity was improved with the decreased IC50 after over-expressing FSTL1. Compared with Blank group, FSTL1 group had declined number of SKOV3 cell colonies and increased cell apoptosis, with obvious up-regulations of FSTL1, Bax/Bcl-2 and cleaved caspase-3 expression and the down-regulations of p-IκBα, p-p65 and survivin expression. Combination of up-regulation of FSTL1 and DDP treatment can also effectively reduce cell colony forming, increase cell apoptosis, and inhibit NF-κB pathway activity of SKOV3/DDP cells. Moreover, this combination can also significantly suppress the growth of subcutaneous xenograft tumors in nude mice.

Conclusion

FSTL1 may inhibit NF-κB signaling pathway to suppress the growth and promote the apoptosis of epithelial ovarian cancer cells, and thereby enhancing its DDP sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han Z, Feng J, Hong Z, Chen L, Li W, Liao S, Wang X, Ji T, Wang S, Ma D, Chen G, Gao Q (2013) Silencing of the STAT3 signaling pathway reverses the inherent and induced chemoresistance of human ovarian cancer cells. Biochem Biophys Res Commun 435(2):188–194. https://doi.org/10.1016/j.bbrc.2013.04.087

    Article  CAS  PubMed  Google Scholar 

  2. Ye H, Karim AA, Loh XJ (2014) Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: a review. Mater Sci Eng C Mater Biol Appl 45:609–619. https://doi.org/10.1016/j.msec.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, Li Y, Wu S (2018) miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis 9(5):447. https://doi.org/10.1038/s41419-018-0390-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lage H, Denkert C (2007) Resistance to chemotherapy in ovarian carcinoma. Recent Results Cancer Res 176:51–60. https://doi.org/10.1007/978-3-540-46091-6_6

    Article  CAS  PubMed  Google Scholar 

  5. Dean E, El-Helw L, Hasan J (2010) Targeted therapies in epithelial ovarian cancer. Cancers 2(1):88–113. https://doi.org/10.3390/cancers2010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zou J, Liu L, Wang Q, Yin F, Yang Z, Zhang W, Li L (2017) Downregulation of miR-429 contributes to the development of drug resistance in epithelial ovarian cancer by targeting ZEB1. Am J Transl Res 9(3):1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hui C, Lan Z, Yue-li L, Li-lin H, Li-lin H (2015) Knockdown of Eag1 Expression by RNA interference increases chemosensitivity to cisplatin in ovarian cancer cells. Reprod Sci 22(12):1618–1626. https://doi.org/10.1177/1933719115590665

    Article  CAS  PubMed  Google Scholar 

  8. Chaly Y, Hostager B, Smith S, Hirsch R (2014) Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res 59(1–3):266–272. https://doi.org/10.1007/s12026-014-8526-z

    Article  CAS  PubMed  Google Scholar 

  9. Reddy SP, Britto R, Vinnakota K, Aparna H, Sreepathi HK, Thota B, Kumari A, Shilpa BM, Vrinda M, Umesh S, Samuel C, Shetty M, Tandon A, Pandey P, Hegde S, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Kondaiah P, Somasundaram K, Rao MR (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14(10):2978–2987. https://doi.org/10.1158/1078-0432.CCR-07-4821

    Article  CAS  PubMed  Google Scholar 

  10. An J, Wang L, Zhao Y, Hao Q, Zhang Y, Zhang J, Yang C, Liu L, Wang W, Fang D, Lu T, Gao Y (2017) Effects of FSTL1 on cell proliferation in breast cancer cell line MDAMB231 and its brain metastatic variant MDAMB231BR. Oncol Rep 38(5):3001–3010. https://doi.org/10.3892/or.2017.6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lau MC, Ng KY, Wong TL, Tong M, Lee TK, Ming XY, Law S, Lee NP, Cheung AL, Qin YR, Chan KW, Ning W, Guan XY, Ma S (2017) FSTL1 promotes metastasis and chemoresistance in esophageal squamous cell carcinoma through NFkappaB-BMP signaling cross-talk. Cancer Res 77(21):5886–5899. https://doi.org/10.1158/0008-5472.CAN-17-1411

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Tan X, Liu W, Chen X, Hou X, Shen D, Ding Y, Yin J, Wang L, Zhang H, Yu Y, Hou J, Thompson TC, Cao G (2018) Follistatin-like protein 1 plays a tumor suppressor role in clear-cell renal cell carcinoma. Chin J Cancer 37(1):2. https://doi.org/10.1186/s40880-018-0267-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336(1–2):25–37. https://doi.org/10.1007/s11010-009-0267-2

    Article  CAS  PubMed  Google Scholar 

  14. Momeny M, Yousefi H, Eyvani H, Moghaddaskho F, Salehi A, Esmaeili F, Alishahi Z, Barghi F, Vaezijoze S, Shamsaiegahkani S, Zarrinrad G, Sankanian G, Sabourinejad Z, Hamzehlou S, Bashash D, Aboutorabi ES, Ghaffari P, Dehpour AR, Tavangar SM, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH (2018) Blockade of nuclear factor-kappaB (NF-kappaB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol 99:1–9. https://doi.org/10.1016/j.biocel.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  15. Bayne K (1996) Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 39(4):199–208

    CAS  PubMed  Google Scholar 

  16. Liu Y, Niu Z, Lin X, Tian Y (2017) MiR-216b increases cisplatin sensitivity in ovarian cancer cells by targeting PARP1. Cancer Gene Ther 24(5):208–214. https://doi.org/10.1038/cgt.2017.6

    Article  CAS  PubMed  Google Scholar 

  17. Chan QK, Ngan HY, Ip PP, Liu VW, Xue WC, Cheung AN (2009) Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis: a differential expression and functional analysis. Carcinogenesis 30(1):114–121. https://doi.org/10.1093/carcin/bgn215

    Article  CAS  PubMed  Google Scholar 

  18. Zhou X, Xiao X, Huang T, Du C, Wang S, Mo Y, Ma N, Murata M, Li B, Wen W, Huang G, Zeng X, Zhang Z (2016) Epigenetic inactivation of follistatin-like 1 mediates tumor immune evasion in nasopharyngeal carcinoma. Oncotarget 7(13):16433–16444. https://doi.org/10.18632/oncotarget.7654

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shibanuma M, Mashimo J, Mita A, Kuroki T, Nose K (1993) Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem 217(1):13–19. https://doi.org/10.1111/j.1432-1033.1993.tb18212.x

    Article  CAS  PubMed  Google Scholar 

  20. Ohba M, Shibanuma M, Kuroki T, Nose K (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126(4):1079–1088. https://doi.org/10.1083/jcb.126.4.1079

    Article  CAS  PubMed  Google Scholar 

  21. Cheng S, Huang Y, Lou C, He Y, Zhang Y, Zhang Q (2019) FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin beta3/Wnt signaling under miR-137 regulation. Cancer Biol Ther 20(3):328–337. https://doi.org/10.1080/15384047.2018.1529101

    Article  CAS  PubMed  Google Scholar 

  22. Yang W, Wu Y, Wang C, Liu Z, Xu M, Zheng X (2017) FSTL1 contributes to tumor progression via attenuating apoptosis in a AKT/GSK-3beta - dependent manner in hepatocellular carcinoma. Cancer Biomark 20(1):75–85. https://doi.org/10.3233/CBM-170132

    Article  CAS  PubMed  Google Scholar 

  23. Su S, Parris AB, Grossman G, Mohler JL, Wang Z, Wilson EM (2017) Up-Regulation of follistatin-like 1 by the androgen receptor and melanoma antigen-A11 in prostate cancer. Prostate 77(5):505–516. https://doi.org/10.1002/pros.23288

    Article  CAS  PubMed  Google Scholar 

  24. Bae K, Park KE, Han J, Kim J, Kim K, Yoon KA (2016) Mitotic cell death caused by follistatin-like 1 inhibition is associated with up-regulated Bim by inactivated Erk1/2 in human lung cancer cells. Oncotarget 7(14):18076–18084. https://doi.org/10.18632/oncotarget.6729

    Article  PubMed  Google Scholar 

  25. Ni X, Cao X, Wu Y, Wu J (2018) FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol Rep 39(1):13–20. https://doi.org/10.3892/or.2017.6061

    Article  CAS  PubMed  Google Scholar 

  26. Tew GW, Lorimer EL, Berg TJ, Zhi H, Li R, Williams CL (2008) SmgGDS regulates cell proliferation, migration, and NF-kappaB transcriptional activity in non-small cell lung carcinoma. J Biol Chem 283(2):963–976. https://doi.org/10.1074/jbc.M707526200

    Article  CAS  PubMed  Google Scholar 

  27. Gupta RK, Banerjee A, Pathak S, Sharma C, Singh N (2013) Induction of mitochondrial-mediated apoptosis by Morinda citrifolia (Noni) in human cervical cancer cells. Asian Pac J Cancer Prev 14(1):237–242. https://doi.org/10.7314/apjcp.2013.14.1.237

    Article  PubMed  Google Scholar 

  28. Yu Z, Chen Y, Wang S, Li P, Zhou G, Yuan Y (2018) Inhibition of NF-kappaB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett 428:77–89. https://doi.org/10.1016/j.canlet.2018.04.033

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309. https://doi.org/10.1038/nrc1588

    Article  CAS  PubMed  Google Scholar 

  30. Inoue J, Gohda J, Akiyama T, Semba K (2007) NF-kappaB activation in development and progression of cancer. Cancer Sci 98(3):268–274. https://doi.org/10.1111/j.1349-7006.2007.00389.x

    Article  CAS  PubMed  Google Scholar 

  31. Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42(1–3):3–18. https://doi.org/10.1007/s12026-008-8025-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang X, Fraser M, Moll UM, Basak A, Tsang BK (2006) Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 66(6):3126–3136. https://doi.org/10.1158/0008-5472.CAN-05-0425

    Article  CAS  PubMed  Google Scholar 

  33. You OH, Kim SH, Kim B, Sohn EJ, Lee HJ, Shim BS, Yun M, Kwon BM, Kim SH (2013) Ginkgetin induces apoptosis via activation of caspase and inhibition of survival genes in PC-3 prostate cancer cells. Bioorg Med Chem Lett 23(9):2692–2695. https://doi.org/10.1016/j.bmcl.2013.02.080

    Article  CAS  PubMed  Google Scholar 

  34. Golbano JM, Loppez-Aparicio P, Recio MN, Perez-Albarsanz MA (2008) Finasteride induces apoptosis via Bcl-2, Bcl-xL, Bax and caspase-3 proteins in LNCaP human prostate cancer cell line. Int J Oncol 32(4):919–924

    CAS  PubMed  Google Scholar 

  35. Pathania AS, Guru SK, Verma MK, Sharma C, Abdullah ST, Malik F, Chandra S, Katoch M, Bhushan S (2013) Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem Toxicol 62:246–254. https://doi.org/10.1016/j.fct.2013.08.037

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz C, Willebrand R, Huber S, Rupec RA, Wu D, Locksley R, Voehringer D (2015) Eosinophil-specific deletion of IkappaBalpha in mice reveals a critical role of NF-kappaB-induced Bcl-xL for inhibition of apoptosis. Blood 125(25):3896–3904. https://doi.org/10.1182/blood-2014-10-607788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Saito M, Kawagoe J, Takahashi K, Yada-Hashimoto N, Sakata M, Motoyama T, Kurachi H, Tasaka K, Murata Y (2004) Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279(22):23477–23485. https://doi.org/10.1074/jbc.M313709200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Kun Liu.

Ethics declarations

Conflict of interest

The authors declared they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YK., Jia, YJ., Liu, SH. et al. FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemother Pharmacol 87, 405–414 (2021). https://doi.org/10.1007/s00280-020-04215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04215-9

Keywords

Navigation