Skip to main content
Log in

Research progress of hydroxychloroquine and autophagy inhibitors on cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed.

Methods

A systematic review was related to ‘hydroxychloroquine’ or ‘chloroquine’ with ‘clinical trials,’ ‘retinopathy’ and ‘new autophagy inhibitors.’ This led to many cross-references involving HCQ, and these data have been incorporated into the following study.

Results

Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors.

Conclusion

Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Debnath J (2011) The multifaceted roles of autophagy in tumors—implications for breast cancer. J Mammary Gland Biol Neoplasia 16:173–187

    Article  PubMed  PubMed Central  Google Scholar 

  4. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wolf R, Wolf D, Ruocco V (2000) Antimalarials: unapproved uses or indications. Clin Dermatol 18:17–35

    Article  CAS  PubMed  Google Scholar 

  6. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amaravadi RK, Lippincott-Schwartz J, Yin XM et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barnard RA, Wittenburg LA, Amaravadi RK et al (2014) Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10:1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahalingam D, Mita M, Sarantopoulos J et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rangwala R, Chang YC, Hu J et al (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10:1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rangwala R, Leone R, Chang YC et al (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogl DT, Stadtmauer EA, Tan KS et al (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10:1380–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolpin BM, Rubinson DA, Wang X et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637–638

    Article  PubMed  PubMed Central  Google Scholar 

  15. Melles RB, Marmor MF (2014) The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 132:1453–1460

    Article  PubMed  Google Scholar 

  16. Wolfe F, Marmor MF (2010) Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res (Hoboken) 62:775–784

    Article  CAS  Google Scholar 

  17. Marmor MF, Kellner U, Lai TY, et al. (2016) American Academy of Ophthalmology. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision) [published online March 16, 2016]. Ophthalmology. doi:10.1016/j.ophtha.2016.01.058

  18. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deretic V (2008) Autophagosome and phagosome. Methods Mol Biol 445:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Townsend KN et al (2012) Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. Immunol Rev 249(1):176–194

    Article  CAS  PubMed  Google Scholar 

  21. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  22. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen M, Hong MJ, Sun H et al (2014) Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 20:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou CG, Ma YC, Dai LL et al (2014) Autophagy protects C elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci USA 111:12480–12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deretic V (2014) Autophagy in tuberculosis. Cold Spring Harb Perspect Med 4:a018481

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rao S, Yang H, Penninger JM et al (2014) Autophagy in non-small cell lung carcinogenesis: a positive regulator of antitumor immunosurveillance. Autophagy 10:529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong YC, Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA 111:E4439–E4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McLendon PM, Ferguson BS, Osinska H et al (2014) Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci USA 111:E5178–E5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morselli E, Galluzzi L, Kepp O et al (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14:2251–2269

    Article  CAS  PubMed  Google Scholar 

  30. Kondo Y, Kanzawa T, Sawaya R et al (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  CAS  PubMed  Google Scholar 

  31. Kim K, Moretti L, Lu B (2008) Combined Bcl(2)/mTOR inhibition leads to enhanced radiosensitization via induction of autophagy and apoptosis in non-small lung tumor xenograft model. Int J Radiat Oncol 72:S45

    Article  Google Scholar 

  32. Amaravadi RK, Yu D, Lum JJ et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig 117:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poole B, Ohkuma S (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90:665–669

    Article  CAS  PubMed  Google Scholar 

  34. Solomon VR, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625:220–233

    Article  CAS  PubMed  Google Scholar 

  35. Bray K, Mathew R, Lau A et al (2012) Autophagy suppresses RIP kinaseYdependent necrosis enabling survival to mTOR inhibition. PLoS ONE 7:e41831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie X, White EP, Mehnert JM (2013) Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma. PLoS ONE 8:e55096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee HO, Mustafa A, Hudes RG et al (2015) Hydroxychloroquine destabilizes phospho-S6 in human renal carcinoma cells. PLoS ONE 10(7):e0131464

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dragowska WH, Weppler SA, Wang JC et al (2013) Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS ONE 8(10):e76503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cook KL, Wärri A, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Clarke R (2014) Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin Cancer Res 20(12):3222–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Helgason GV, Mukhopadhyay A, Karvela M et al (2013) Autophagy in Chronic Myeloid Leukaemia: stem Cell Survival and Implication in Therapy. Curr Cancer Drug Targets 13:724–734

    Article  CAS  PubMed  Google Scholar 

  41. Pan Y, Gao Y, Chen L et al (2011) Targeting autophagy augments in vitro and in vivo antimyeloma activity of DNA-damaging chemotherapy. Clin Can Res 17:3248–3258

    Article  CAS  Google Scholar 

  42. Yang ZJ, Chee CE, Huang S et al (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Yang B, Zhou Q et al (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34:1343–1351

    Article  CAS  PubMed  Google Scholar 

  44. Yang A, Kimmelman AC (2014) Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy 10(9):1683–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carew JS, Nawrocki ST, Kahue CN et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carew JS, Medina EC, Esquivel JA et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459

    Article  CAS  PubMed  Google Scholar 

  47. Ma XH, Piao S, Wang D et al (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17:3478–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawaguchi T, Miyazawa K, Moriya S et al (2011) Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress. Int J Oncol 38:643–654

    CAS  PubMed  Google Scholar 

  49. Shen JPYC, Divakaran S, Bradner JE et al (2008) The rationale for combined proteasome and autophagy inhibition in multiple myeloma established using novel translational platforms. Am Soc Hematol 112:2755

    Google Scholar 

  50. Escalante AM, McGrath RT, Karolak MR et al (2013) Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemother Pharmacol 71:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Poklepovic A, Gewirtz DA (2014) Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10:1478–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gewirtz David A (2014) The autophagic response to radiation: relevance for radiation sensitization in cancer therapy. Radiat Res Soc 182(4):363–367

    Article  Google Scholar 

  53. Easterbrook M (1992) Long-term course of antimalarial maculopathy after cessation of treatment. Can J Ophthalmol 27:237–239

    CAS  PubMed  Google Scholar 

  54. Elman A, Gullberg R, Nilsson E et al (1976) Chloroquine retinopathy in patients with rheumatoid arthritis. Scand J Rheumatol 5:161–166

    Article  CAS  PubMed  Google Scholar 

  55. Levy GD, Munz SJ, Paschal J et al (1997) Incidence of hydroxychloroquine retinopathy in 1,207 patients in a large multicenter outpatient practice. Arthritis Rheum 40(8):1482–1486

    Article  CAS  PubMed  Google Scholar 

  56. Mavrikakis I, Sfikakis PP, Mavrikakis E et al (2003) The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine: a reappraisal. Ophthalmology 110(7):1321–1326

    Article  PubMed  Google Scholar 

  57. Furst DE, Lindsley H, Baethge B et al (1999) Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis: a randomized, double-blind six-week trial with eighteen-week extension. Arthritis Rheum 42(2):357–365

    Article  CAS  PubMed  Google Scholar 

  58. Munster T, Gibbs JP, Shen D et al (2002) Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46(6):1460–1469

    Article  CAS  PubMed  Google Scholar 

  59. Leung LS, Neal JW, Wakelee HA et al (2015) Rapid onset of retinal toxicity from high-dose hydroxychloroquine given for cancer therapy. Am J Ophthalmol 160:799–805

    Article  CAS  PubMed  Google Scholar 

  60. Nika M, Blachley TS, Edwards P et al (2014) Regular examinations for toxic maculopathy in long-term chloroquine or hydroxychloroquine users. JAMA Ophthalmol 132(10):1199–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marmor MF (2012) Comparison of screening procedures in hydroxychloroquine toxicity. Arch Ophthalmol 130(4):461–469

    Article  CAS  PubMed  Google Scholar 

  62. McAfee Q, Zhang Z, Samanta A et al (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109:8253–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bristol ML, Emery SM, Maycotte P et al (2013) Autophagy inhibition for chemosensitization and radiosensitization in cancer: Do the preclinical data support this therapeutic strategy? J Pharmacol Exp Ther 344:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453(7197):940–943

    Article  CAS  PubMed  Google Scholar 

  65. De Milito A, Canese R, Marino ML et al (2009) pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 127:207–219

    Article  Google Scholar 

  66. Robey IF, Baggett BK, Kirkpatrick ND et al (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69(6):2260–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pellegrini P, Strambi A, Zipoli C et al (2014) Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10(4):562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Amaravadi RK, Winkler JD (2012) Lys05 A new lysosomal autophagy inhibitor. Autophagy 8(9):1383–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma XH, Piao SF, Dey S et al (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Investig 124:1406–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ronan B, Flamand O, Vescovi L et al (2014) A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 10(12):1013–1019

    Article  CAS  PubMed  Google Scholar 

  71. Pasquier B (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with mTOR inhibition in tumor cells. Autophagy 4:725–726

    Article  Google Scholar 

  72. Donohue E, Tovey A, Vogl AW et al (2011) Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J Biol Chem 286:72

    Article  Google Scholar 

  73. Donohue E, Thomas A, Maurer N et al (2013) The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer 4(7):585–596

    Article  PubMed  PubMed Central  Google Scholar 

  74. Goodall ML, Wang T, Martin KR et al (2014) Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 10:1120–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma N, Thomas S, Golden EB et al (2012) Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett 326(2):143–154

    Article  CAS  PubMed  Google Scholar 

  76. Liu J, Xia H, Kim M et al (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147(1):223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chloroquine and its analogs (2009) A new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625(1–3):220–233

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Program of Sichuan Province (Grant Nos: 2009SZ0226, 2014FZ0103, 2015JQO027, 2015ZR0160) and the health department of Sichuan Province (Grant Nos: 100491, 120111) and Chengdu City Science and technology project (Grant No: 11PPYB010SF-289) and Young Scholars foundation of Sichuan Provincial People’s Hospital (Grant Nos: 30305030606, 303050308590).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Jun Yan or Hong-Tao Xiao.

Ethics declarations

Conflict of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this manuscript.

Additional information

Ting-Ting Shi and Xiao-Xu Yu have contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, TT., Yu, XX., Yan, LJ. et al. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol 79, 287–294 (2017). https://doi.org/10.1007/s00280-016-3197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3197-1

Keywords

Navigation