Skip to main content

Advertisement

Log in

Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Approximately 70 % of triple-negative breast cancer (TNBC) cell lines are identified to upregulate phosphoglycerate dehydrogenase (PHGDH), which regulates the intracellular synthesis of serine and glycine, and promotes tumor growth. In this work, the impact of this pathway on doxorubicin efficacy was evaluated.

Methods

MDA-MB-468, BT-20 and HCC70 cells were transfected with lentiviral vectors expressing short hairpin RNA (shRNA) against PHGDH. In response to doxorubicin treatment, cellular proliferation was measured, ROS were evaluated and intracellular levels of serine, glycine and glutathione (GSH) were determined using liquid chromatography–mass spectrometry. A TNBC orthotopic tumor model was used to examine the effect of PHGDH on doxorubicin efficacy in vivo.

Results

TNBC cells exposed to doxorubicin undergo metabolic remodeling, resulting in increased glucose flux for serine synthesis regulated by PHGDH. Serine is then converted into GSH, which counters doxorubicin-induced formation of ROS. Consequently, suppression of PHGDH by the use of the shRNA caused doxorubicin-induced oxidative stress and increased doxorubicin sensitivity. The enhancement of doxorubicin efficacy through simultaneous suppression of PHGDH was validated in a mouse tumor model.

Conclusion

These results shed light on PHGDH that could be a promising target for increasing the effectiveness of chemotherapy in patients with TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8(3):235–244. doi:10.1016/S1470-2045(07)70074-8

    Article  PubMed  Google Scholar 

  2. Stevens KN, Vachon CM, Couch FJ (2013) Genetic susceptibility to triple-negative breast cancer. Cancer Res 73(7):2025–2030. doi:10.1158/0008-5472.CAN-12-1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith L, Watson MB, O’Kane SL, Drew PJ, Lind MJ, Cawkwell L (2006) The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther 5(8):2115–2120. doi:10.1158/1535-7163.MCT-06-0190

    Article  CAS  PubMed  Google Scholar 

  4. Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 23(9):2223–2234. doi:10.1093/annonc/mds067

    Article  CAS  PubMed  Google Scholar 

  5. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):U869–U879. doi:10.1038/ng.890

    Article  Google Scholar 

  6. Locasale JW, Cantley LC (2011) Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle 10(22):3812–3813. doi:10.4161/cc.10.22.18224

    Article  CAS  PubMed  Google Scholar 

  7. Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, Frezza C, O’Reilly M, Gottlieb E (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462. doi:10.1038/nature11540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493(7433):542–546. doi:10.1038/nature11743

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Yi J (2008) Cancer cell killing via ROS To increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884. doi:10.4161/cbt.7.12.7067

    Article  CAS  PubMed  Google Scholar 

  10. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. doi:10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  11. Ravid A, Rocker D, Machlenkin A, Rotem C, Hochman A, Kessler-Icekson G, Liberman UA, Koren R (1999) 1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res 59(4):862–867

    CAS  PubMed  Google Scholar 

  12. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350. doi:10.1038/nature10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M, Dereli-Oz A, Kocylowski M, Pateras IS, Evangelou K, Kotsinas A, Orsolic I, Bursac S, Cokaric-Brdovcak M, Zoumpourlis V, Kletsas D, Papafotiou G, Klinakis A, Volarevic S, Gu W, Bartek J, Halazonetis TD, Gorgoulis VG (2014) Functional interplay between the DNA-damage-response kinase ATM and ARF tumor suppressor protein in human cancer. Nat Cell Biol 15(8):967–977. doi:10.1038/ncb2795

    Article  Google Scholar 

  14. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350. doi:10.1073/pnas.0709747104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45(4):649–656

    CAS  PubMed  Google Scholar 

  16. Wu X, Hasinoff BB (2005) The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anticancer Drugs 16(1):93–99. doi:10.1097/00001813-200501000-00014

    Article  CAS  PubMed  Google Scholar 

  17. Gilliam LA, Moylan JS, Patterson EW, Smith JD, Wilson AS, Rabbani Z, Reid MB (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302(1):C195–C202. doi:10.1152/ajpcell.00217.2011

    Article  CAS  PubMed  Google Scholar 

  18. Wang SW, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms—intermediacy of H2O2- and p53-dependent pathways. J Biol Chem 279(24):25535–25543. doi:10.1074/jbc.M400944200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Bai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Bai, W. Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother Pharmacol 78, 655–659 (2016). https://doi.org/10.1007/s00280-016-3117-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3117-4

Keywords

Navigation