Skip to main content

Advertisement

Log in

Personalizing chemotherapy dosing using pharmacological methods

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Given the toxic nature and narrow therapeutic index of traditional chemotherapeutics, better methods of dose and therapy selection are critical. Pharmacological methods, including pharmacogenomics and pharmacokinetics, offer a practical method to enrich drug exposure, reduce toxicity, and improve quality of life for patients.

Methods

PubMed and key abstracts from the American Society of Clinical Oncology (ASCO) and American Association for Cancer Research (AACR) were searched until July 2015 for clinical data relating to pharmacogenomic- and/or pharmacokinetic-guided dosing of anticancer drugs.

Results

Based on the results returned from a thorough search of the literature and the plausibility of utilizing pharmacogenomic and/or pharmacokinetic methods to personalize chemotherapy dosing, we identified several chemotherapeutic agents with the potential for therapy individualization. We highlight the available data, clinical validity, and utility of using pharmacogenomics to personalize therapy for tamoxifen, 5-fluorouracil, mercaptopurine, and irinotecan, in addition to using pharmacokinetics to personalize dosing for 5-fluorouracil, busulfan, methotrexate, taxanes, and topotecan.

Conclusion

A concerted effort should be made by researchers to further elucidate the role of pharmacological methods in personalizing chemotherapy dosing to optimize the risk–benefit profile. Clinicians should be aware of the clinical validity, utility, and availability of pharmacogenomic- and pharmacokinetic-guided therapies in clinical practice, to ultimately allow optimal dosing for each and every cancer patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aggarwal S (2010) Targeted cancer therapies. Nat Rev Drug Discov 9:427–428. doi:10.1038/nrd3186

    Article  CAS  PubMed  Google Scholar 

  2. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433. doi:10.1126/science.342.6165.1432

    Article  CAS  PubMed  Google Scholar 

  3. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. doi:10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  4. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–251. doi:10.1038/nrc3237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Extermann M, Boler I, Reich RR, Lyman GH, Brown RH, DeFelice J, Levine RM, Lubiner ET, Reyes P, Schreiber FJ 3rd, Balducci L (2012) Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer 118:3377–3386. doi:10.1002/cncr.26646

    Article  PubMed  Google Scholar 

  6. Green ED, Guyer MS, National Human Genome Research I (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470:204–213. doi:10.1038/nature09764

    Article  CAS  PubMed  Google Scholar 

  7. Patel JN (2014) Application of genotype-guided cancer therapy in solid tumors. Pharmacogenomics 15:79–93. doi:10.2217/pgs.13.227

    Article  CAS  PubMed  Google Scholar 

  8. Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, Bielinski SJ, Brautbar A, Brilliant MH, Carrell DS, Connolly JJ, Crosslin DR, Doheny KF, Gallego CJ, Gottesman O, Kim DS, Leppig KA, Li R, Lin S, Manzi S, Mejia AR, Pacheco JA, Pan V, Pathak J, Perry CL, Peterson JF, Prows CA, Ralston J, Rasmussen LV, Ritchie MD, Sadhasivam S, Scott SA, Smith M, Vega A, Vinks AA, Volpi S, Wolf WA, Bottinger E, Chisholm RL, Chute CG, Haines JL, Harley JB, Keating B, Holm IA, Kullo IJ, Jarvik GP, Larson EB, Manolio T, McCarty CA, Nickerson DA, Scherer SE, Williams MS, Roden DM, Denny JC (2014) Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther 96:482–489. doi:10.1038/clpt.2014.137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Hicks JK, Schwab M, Klein TE (2013) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 93:324–325. doi:10.1038/clpt.2013.4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB, Schwab M (2013) Clinical pharmacogenetics implementation consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther 94:640–645. doi:10.1038/clpt.2013.172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H (2012) Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 30:4017–4025. doi:10.1200/JCO.2012.43.5362

    Article  CAS  PubMed  Google Scholar 

  12. Yu H, Steeghs N, Nijenhuis CM, Schellens JH, Beijnen JH, Huitema AD (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–325. doi:10.1007/s40262-014-0137-2

    Article  CAS  PubMed  Google Scholar 

  13. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39. doi:10.1093/jnci/dji005

    Article  CAS  PubMed  Google Scholar 

  14. Bernard S, Neville KA, Nguyen AT, Flockhart DA (2006) Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist 11:126–135. doi:10.1634/theoncologist.11-2-126

    Article  CAS  PubMed  Google Scholar 

  15. Gaedigk A, et al (last updated 2014) PharmGKB CYP2D6 allelic variation summary table and legend. http://www.cypalleles.ki.se/cyp2d6.htm

  16. Schroth W, Hamann U, Fasching PA, Dauser S, Winter S, Eichelbaum M, Schwab M, Brauch H (2010) CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage improves risk stratification. Clin Cancer Res 16:4468–4477. doi:10.1158/1078-0432.CCR-10-0478

    Article  CAS  PubMed  Google Scholar 

  17. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243. doi:10.1517/14622416.3.2.229

    Article  CAS  PubMed  Google Scholar 

  18. Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM, Safgren SL, Kuffel MJ, Ulmer HU, Bolander J, Strick R, Beckmann MW, Koelbl H, Weinshilboum RM, Ingle JN, Eichelbaum M, Schwab M, Brauch H (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302:1429–1436. doi:10.1001/jama.2009.1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Province MA, Goetz MP, Brauch H, Flockhart DA, Hebert JM, Whaley R, Suman VJ, Schroth W, Winter S, Zembutsu H, Mushiroda T, Newman WG, Lee MT, Ambrosone CB, Beckmann MW, Choi JY, Dieudonne AS, Fasching PA, Ferraldeschi R, Gong L, Haschke-Becher E, Howell A, Jordan LB, Hamann U, Kiyotani K, Krippl P, Lambrechts D, Latif A, Langsenlehner U, Lorizio W, Neven P, Nguyen AT, Park BW, Purdie CA, Quinlan P, Renner W, Schmidt M, Schwab M, Shin JG, Stingl JC, Wegman P, Wingren S, Wu AH, Ziv E, Zirpoli G, Thompson AM, Jordan VC, Nakamura Y, Altman RB, Ames MM, Weinshilboum RM, Eichelbaum M, Ingle JN, Klein TE, International Tamoxifen Pharmacogenomics C (2014) CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin Pharmacol Ther 95:216–227. doi:10.1038/clpt.2013.186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Flockhart DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29:3232–3239. doi:10.1200/JCO.2010.31.4427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hertz DL, Snavely AC, Evans JP, Ibrahim JG, Anderson SM, Friedman KJ, Weck KE, et al. (2014) Does increasing the daily tamoxifen dose in patients with diminished CYP2D6 activity increase toxicity? J Clin Oncol 32:5 (suppl; abstr 561)

  22. Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Nikoloff DM, Hillman G, Fontecha MR, Lawrence HJ, Parker BA, Wu AH, Pierce JP (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89:718–725. doi:10.1038/clpt.2011.32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R, Dell’orto P, Biasi MO, Thurlimann B, Lyng MB, Ditzel HJ, Neven P, Debled M, Maibach R, Price KN, Gelber RD, Coates AS, Goldhirsch A, Rae JM, Viale G, Breast International Group 1-98 Collaborative G (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 104:441–451. doi:10.1093/jnci/djs125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP, Salter J, Sestak I, Cuzick J, Dowsett M, ATAC trialists (2012) CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 104:452–460. doi:10.1093/jnci/djs126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nakamura Y, Ratain MJ, Cox NJ, McLeod HL, Kroetz DL, Flockhart DA (2012) Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J Natl Cancer Inst 104:1264 (author reply 1266–1268). doi:10.1093/jnci/djs304

  26. Goetz MP, Sun JX, Suman VJ, Silva GO, Perou CM, Nakamura Y, Cox NJ, Stephens PJ, Miller VA, Ross JS, Chen D, Safgren SL, Kuffel MJ, Ames MM, Kalari KR, Gomez HL, Gonzalez-Angulo AM, Burgues O, Brauch HB, Ingle JN, Ratain MJ, Yelensky R (2015) Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J Natl Cancer Inst. doi:10.1093/jnci/dju401

    Google Scholar 

  27. Goetz MP, Suman VJ, Hoskin TL, Gnant M, Filipits M, Safgren SL, Kuffel M, Jakesz R, Rudas M, Greil R, Dietze O, Lang A, Offner F, Reynolds CA, Weinshilboum RM, Ames MM, Ingle JN (2013) CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin Cancer Res 19:500–507. doi:10.1158/1078-0432.CCR-12-2153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Saladores P, Murdter T, Eccles D, Chowbay B, Zgheib NK, Winter S, Ganchev B, Eccles B, Gerty S, Tfayli A, Lim JS, Yap YS, Ng RC, Wong NS, Dent R, Habbal MZ, Schaeffeler E, Eichelbaum M, Schroth W, Schwab M, Brauch H (2014) Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J. doi:10.1038/tpj.2014.34

    PubMed Central  PubMed  Google Scholar 

  29. Hertz DL, McLeod HL, Irvin WJ Jr (2012) Tamoxifen and CYP2D6: a contradiction of data. Oncologist 17:620–630. doi:10.1634/theoncologist.2011-0418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Brauch H, Schroth W, Goetz MP, Murdter TE, Winter S, Ingle JN, Schwab M, Eichelbaum M (2013) Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J Clin Oncol 31:176–180. doi:10.1200/JCO.2012.44.6625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Toffoli G, Cecchin E (2007) Pharmacogenetics and stomach cancer: an update. Pharmacogenomics 8:497–505. doi:10.2217/14622416.8.5.497

    Article  CAS  PubMed  Google Scholar 

  32. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH (2002) High prevalence of the IVS14 + 1G > A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 12:555–558

    Article  PubMed  Google Scholar 

  33. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C, Eichelbaum M, German FUTSG (2008) Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol 26:2131–2138. doi:10.1200/JCO.2006.10.4182

    Article  CAS  PubMed  Google Scholar 

  34. Deenen MJ, Cats A, Sechterberger MK, Severens JL, Smits PHM, Bakker R, et al. (2011) Safety, pharmacokinetics (PK), and cost effectiveness of upfront genotyping of DPYD in fluoropyrimidine therapy. J Clin Oncol 29 (suppl; abstr 3606)

  35. Rosmarin D, Palles C, Church D, Domingo E, Jones A, Johnstone E, Wang H, Love S, Julier P, Scudder C, Nicholson G, Gonzalez-Neira A, Martin M, Sargent D, Green E, McLeod H, Zanger UM, Schwab M, Braun M, Seymour M, Thompson L, Lacas B, Boige V, Ribelles N, Afzal S, Enghusen H, Jensen SA, Etienne-Grimaldi MC, Milano G, Wadelius M, Glimelius B, Garmo H, Gusella M, Lecomte T, Laurent-Puig P, Martinez-Balibrea E, Sharma R, Garcia-Foncillas J, Kleibl Z, Morel A, Pignon JP, Midgley R, Kerr D, Tomlinson I (2014) Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol 32:1031–1039. doi:10.1200/JCO.2013.51.1857

    Article  CAS  PubMed  Google Scholar 

  36. Yen JL, McLeod HL (2007) Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer 43:1011–1016. doi:10.1016/j.ejca.2007.01.030

    Article  PubMed  Google Scholar 

  37. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S, Gamelin E (2006) Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 5:2895–2904. doi:10.1158/1535-7163.MCT-06-0327

    Article  CAS  PubMed  Google Scholar 

  38. McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE (1994) Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 55:15–20

    Article  CAS  PubMed  Google Scholar 

  39. McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572

    Article  CAS  PubMed  Google Scholar 

  40. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M, Welte K, Ludwig WD, Bartram CR, Zanger UM, Eichelbaum M, Schrappe M, Schwab M (2005) Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293:1485–1489. doi:10.1001/jama.293.12.1485

    Article  CAS  PubMed  Google Scholar 

  41. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14:407–417

    Article  CAS  PubMed  Google Scholar 

  42. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  CAS  PubMed  Google Scholar 

  43. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, Yang W, Cheng C, Pui CH, Relling MV, Evans WE (2009) Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 85:164–172. doi:10.1038/clpt.2008.154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235–1242. doi:10.1200/JCO.2014.59.4671

    Article  CAS  PubMed  Google Scholar 

  45. Innocenti F, Ratain MJ (2003) Irinotecan treatment in cancer patients with UGT1A1 polymorphisms. Oncology 17:52–55

    PubMed  Google Scholar 

  46. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194

    CAS  PubMed  Google Scholar 

  47. Perera MA, Innocenti F, Ratain MJ (2008) Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 28:755–768. doi:10.1592/phco.28.6.755

    Article  CAS  PubMed  Google Scholar 

  48. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99:1290–1295. doi:10.1093/jnci/djm115

    Article  CAS  PubMed  Google Scholar 

  49. United States Food and Drug Administration. Camptosar package insert. http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/20571s16lbl.pdf

  50. Toffoli G, Cecchin E, Gasparini G, D’Andrea M, Azzarello G, Basso U, Mini E, Pessa S, De Mattia E, Lo Re G, Buonadonna A, Nobili S, De Paoli P, Innocenti F (2010) Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol 28:866–871. doi:10.1200/JCO.2009.23.6125

    Article  CAS  PubMed  Google Scholar 

  51. Marcuello E, Paez D, Pare L, Salazar J, Sebio A, del Rio E, Baiget M (2011) A genotype-directed phase I–IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer 105:53–57. doi:10.1038/bjc.2011.206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Innocenti F, Schilsky RL, Ramirez J, Janisch L, Undevia S, House LK, Das S, Wu K, Turcich M, Marsh R, Karrison T, Maitland ML, Salgia R, Ratain MJ (2014) Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 32:2328–2334. doi:10.1200/JCO.2014.55.2307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Di Paolo A, Lencioni M, Amatori F, Di Donato S, Bocci G, Orlandini C, Lastella M, Federici F, Iannopollo M, Falcone A, Ricci S, Del Tacca M, Danesi R (2008) 5-fluorouracil pharmacokinetics predicts disease-free survival in patients administered adjuvant chemotherapy for colorectal cancer. Clin Cancer Res 14:2749–2755. doi:10.1158/1078-0432.CCR-07-1529

    Article  PubMed  Google Scholar 

  54. Patel JN, O’Neil BH, Deal AM, Ibrahim JG, Sherrill GB, Olajide OA, Atluri PM, Inzerillo JJ, Chay CH, McLeod HL, Walko CM (2014) A community-based multicenter trial of pharmacokinetically guided 5-fluorouracil dosing for personalized colorectal cancer therapy. Oncologist 19:959–965. doi:10.1634/theoncologist.2014-0132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Saif MW, Choma A, Salamone SJ, Chu E (2009) Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst 101:1543–1552. doi:10.1093/jnci/djp328

    Article  CAS  PubMed  Google Scholar 

  56. Gamelin E, Boisdron-Celle M, Delva R, Regimbeau C, Cailleux PE, Alleaume C, Maillet ML, Goudier MJ, Sire M, Person-Joly MC, Maigre M, Maillart P, Fety R, Burtin P, Lortholary A, Dumesnil Y, Picon L, Geslin J, Gesta P, Danquechin-Dorval E, Larra F, Robert J (1998) Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J Clin Oncol 16:1470–1478

    CAS  PubMed  Google Scholar 

  57. Fety R, Rolland F, Barberi-Heyob M, Hardouin A, Campion L, Conroy T, Merlin JL, Riviere A, Perrocheau G, Etienne MC, Milano G (1998) Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res 4:2039–2045

    CAS  PubMed  Google Scholar 

  58. Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, Dorval E, Piot G, Morel A, Boisdron-Celle M (2008) Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26:2099–2105. doi:10.1200/JCO.2007.13.3934

    Article  CAS  PubMed  Google Scholar 

  59. Capitain O, Asevoaia A, Boisdron-Celle M, Poirier AL, Morel A, Gamelin E (2012) Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a phase II, proof-of-concept study. Clin Colorectal Cancer 11:263–267. doi:10.1016/j.clcc.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  60. Ciurea SO, Andersson BS (2009) Busulfan in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 15:523–536. doi:10.1016/j.bbmt.2008.12.489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Andersson BS, Thall PF, Madden T, Couriel D, Wang X, Tran HT, Anderlini P, de Lima M, Gajewski J, Champlin RE (2002) Busulfan systemic exposure relative to regimen-related toxicity and acute graft-versus-host disease: defining a therapeutic window for i.v. BuCy2 in chronic myelogenous leukemia. Biol Blood Marrow Transplant 8:477–485

    Article  CAS  PubMed  Google Scholar 

  62. Geddes M, Kangarloo SB, Naveed F, Quinlan D, Chaudhry MA, Stewart D, Savoie ML, Bahlis NJ, Brown C, Storek J, Andersson BS, Russell JA (2008) High busulfan exposure is associated with worse outcomes in a daily i.v. busulfan and fludarabine allogeneic transplant regimen. Biol Blood Marrow Transplant 14:220–228. doi:10.1016/j.bbmt.2007.10.028

    Article  CAS  PubMed  Google Scholar 

  63. Kangarloo SB, Naveed F, Ng ES, Chaudhry MA, Wu J, Bahlis NJ, Brown CB, Daly A, Duggan P, Geddes M, Quinlan D, Savoie ML, Shafey M, Stewart DA, Storek J, Yang M, Zacarias N, Yue P, Magliocco AM, Russell JA (2012) Development and validation of a test dose strategy for once-daily i.v. busulfan: importance of fixed infusion rate dosing. Biol Blood Marrow Transplant 18:295–301. doi:10.1016/j.bbmt.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  64. Buffery PJ, Allen KM, Chin PK, Moore GA, Barclay ML, Begg EJ (2014) Thirteen years’ experience of pharmacokinetic monitoring and dosing of busulfan: can the strategy be improved? Ther Drug Monit 36:86–92. doi:10.1097/FTD.0b013e31829dc940

    CAS  PubMed  Google Scholar 

  65. Bartelink IH, Bredius RG, Belitser SV, Suttorp MM, Bierings M, Knibbe CA, Egeler M, Lankester AC, Egberts AC, Zwaveling J, Boelens JJ (2009) Association between busulfan exposure and outcome in children receiving intravenous busulfan before hematologic stem cell transplantation. Biol Blood Marrow Transplant 15:231–241. doi:10.1016/j.bbmt.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  66. Ansari M, Theoret Y, Rezgui MA, Peters C, Mezziani S, Desjean C, Vachon MF, Champagne MA, Duval M, Krajinovic M, Bittencourt H, Pediatric Disease Working Parties of the European B, Marrow Transplant G (2014) Association between busulfan exposure and outcome in children receiving intravenous busulfan before hematopoietic stem cell transplantation. Ther Drug Monit 36:93–99. doi:10.1097/FTD.0b013e3182a04fc7

    CAS  PubMed  Google Scholar 

  67. Bartelink IH, van Reij EM, Gerhardt CE, van Maarseveen EM, de Wildt A, Versluys B, Lindemans CA, Bierings MB, Boelens JJ (2014) Fludarabine and exposure-targeted busulfan compares favorably with busulfan/cyclophosphamide-based regimens in pediatric hematopoietic cell transplantation: maintaining efficacy with less toxicity. Biol Blood Marrow Transplant 20:345–353. doi:10.1016/j.bbmt.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  68. Paci A, Veal G, Bardin C, Leveque D, Widmer N, Beijnen J, Astier A, Chatelut E (2014) Review of therapeutic drug monitoring of anticancer drugs part 1—cytotoxics. Eur J Cancer 50:2010–2019. doi:10.1016/j.ejca.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  69. Leveque D, Santucci R, Gourieux B, Herbrecht R (2011) Pharmacokinetic drug–drug interactions with methotrexate in oncology. Expert Rev Clin Pharmacol 4:743–750. doi:10.1586/ecp.11.57

    Article  CAS  PubMed  Google Scholar 

  70. Holmboe L, Andersen AM, Morkrid L, Slordal L, Hall KS (2012) High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol 73:106–114. doi:10.1111/j.1365-2125.2011.04054.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12:1667–1672

    CAS  PubMed  Google Scholar 

  72. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH (1998) Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 338:499–505. doi:10.1056/NEJM199802193380803

    Article  CAS  PubMed  Google Scholar 

  73. Crews KR, Liu T, Rodriguez-Galindo C, Tan M, Meyer WH, Panetta JC, Link MP, Daw NC (2004) High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. Cancer 100:1724–1733. doi:10.1002/cncr.20152

    Article  CAS  PubMed  Google Scholar 

  74. Fujita Y, Nakamura T, Aomori T, Nishiba H, Shinozaki H, Yanagawa T, Takagishi K, Watanabe H, Okada Y, Nakamura K, Horiuchi R, Yamamoto K (2010) Pharmacokinetic individualization of high-dose methotrexate chemotherapy for the treatment of localized osteosarcoma. J Chemother 22:186–190. doi:10.1179/joc.2010.22.3.186

    Article  CAS  PubMed  Google Scholar 

  75. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, Chan D, Sparreboom A, Giacomini KM, Pui CH, Evans WE, Relling MV (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27:5972–5978. doi:10.1200/JCO.2008.20.4156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Abboud MR, Solh H, Muwakkit SA (2014) Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics 24:387–396. doi:10.1097/FPC.0000000000000069

    CAS  PubMed  Google Scholar 

  77. Zhang HN, He XL, Wang C, Wang Y, Chen YJ, Li JX, Niu CH, Gao P (2014) Impact of SLCO1B1 521T > C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer 61:2203–2207. doi:10.1002/pbc.25191

    Article  CAS  PubMed  Google Scholar 

  78. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A, Stanulla M, Schrappe M, Langer T (2013) Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121:5145–5153. doi:10.1182/blood-2013-01-480335

    Article  CAS  PubMed  Google Scholar 

  79. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, Martin PL, Cheng C, Devidas M, Pui CH, Evans WE, Hunger SP, Loh M, Relling MV (2013) Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood 121:898–904. doi:10.1182/blood-2012-08-452839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Huizing MT, Keung AC, Rosing H, van der Kuij V, ten Bokkel Huinink WW, Mandjes IM, Dubbelman AC, Pinedo HM, Beijnen JH (1993) Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 11:2127–2135

    CAS  PubMed  Google Scholar 

  81. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Lacatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    CAS  PubMed  Google Scholar 

  82. Huizing MT, Giaccone G, van Warmerdam LJ, Rosing H, Bakker PJ, Vermorken JB, Postmus PE, van Zandwijk N, Koolen MG, ten Bokkel Huinink WW, van der Vijgh WJ, Bierhorst FJ, Lai A, Dalesio O, Pinedo HM, Veenhof CH, Beijnen JH (1997) Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J Clin Oncol 15:317–329

    CAS  PubMed  Google Scholar 

  83. de Jonge ME, van den Bongard HJ, Huitema AD, Mathot RA, Rosing H, Baas P, van Zandwijk N, Beijnen JH, Schellens JH (2004) Bayesian pharmacokinetically guided dosing of paclitaxel in patients with non-small cell lung cancer. Clin Cancer Res 10:2237–2244

    Article  PubMed  Google Scholar 

  84. Sonnichsen DS, Hurwitz CA, Pratt CB, Shuster JJ, Relling MV (1994) Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J Clin Oncol 12:532–538

    CAS  PubMed  Google Scholar 

  85. Woo MH, Relling MV, Sonnichsen DS, Rivera GK, Pratt CB, Pui CH, Evans WE, Pappo AS (1999) Phase I targeted systemic exposure study of paclitaxel in children with refractory acute leukemias. Clin Cancer Res 5:543–549

    CAS  PubMed  Google Scholar 

  86. Mielke S, Sparreboom A, Steinberg SM, Gelderblom H, Unger C, Behringer D, Mross K (2005) Association of Paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin Cancer Res 11:4843–4850. doi:10.1158/1078-0432.CCR-05-0298

    Article  CAS  PubMed  Google Scholar 

  87. Joerger M, Von Pawel J, Kraff S, Fischer JR, Eberhardt W, Gauler TC, Mueller L, Reinmuth N, Reck M, Kimmich M, Mayer F, et al (2015) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol (suppl; abstr 8051)

  88. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT, Kaye SB, Verweij J, Fossella FV, Valero V, Rigas JR, Seidman AD, Chevallier B, Fumoleau P, Burris HA, Ravdin PM, Sheiner LB (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16:187–196

    CAS  PubMed  Google Scholar 

  89. Yamamoto N, Tamura T, Kamiya Y, Sekine I, Kunitoh H, Saijo N (2000) Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J Clin Oncol 18:2301–2308

    CAS  PubMed  Google Scholar 

  90. Yamamoto N, Tamura T, Murakami H, Shimoyama T, Nokihara H, Ueda Y, Sekine I, Kunitoh H, Ohe Y, Kodama T, Shimizu M, Nishio K, Ishizuka N, Saijo N (2005) Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J Clin Oncol 23:1061–1069. doi:10.1200/JCO.2005.11.036

    Article  CAS  PubMed  Google Scholar 

  91. Engels FK, Loos WJ, van der Bol JM, de Bruijn P, Mathijssen RH, Verweij J, Mathot RA (2011) Therapeutic drug monitoring for the individualization of docetaxel dosing: a randomized pharmacokinetic study. Clin Cancer Res 17:353–362. doi:10.1158/1078-0432.CCR-10-1636

    Article  CAS  PubMed  Google Scholar 

  92. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol 25:4528–4535. doi:10.1200/JCO.2006.10.4752

    Article  CAS  PubMed  Google Scholar 

  93. Marsh S, Somlo G, Li X, Frankel P, King CR, Shannon WD, McLeod HL, Synold TW (2007) Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 7:362–365. doi:10.1038/sj.tpj.6500434

    Article  CAS  PubMed  Google Scholar 

  94. Morii K, Tanaka R, Takahashi Y, Kuwano R (1992) Cloning of cDNAs encoding human S-100 alpha and beta subunits and their differential expression in human tumor cell lines. J Neurosci Res 32:27–33. doi:10.1002/jnr.490320104

    Article  CAS  PubMed  Google Scholar 

  95. Hahn NM, Marsh S, Fisher W, Langdon R, Zon R, Browning M, Johnson CS, Scott-Horton TJ, Li L, McLeod HL, Sweeney CJ (2006) Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 12:6094–6099. doi:10.1158/1078-0432.CCR-06-1188

    Article  CAS  PubMed  Google Scholar 

  96. Johnatty SE, Beesley J, Paul J, Fereday S, Spurdle AB, Webb PM, Byth K, Marsh S, McLeod H, Group AS, Harnett PR, Brown R, DeFazio A, Chenevix-Trench G (2008) ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin Cancer Res 14:5594–5601. doi:10.1158/1078-0432.CCR-08-0606

    Article  CAS  PubMed  Google Scholar 

  97. Sissung TM, Danesi R, Price DK, Steinberg SM, de Wit R, Zahid M, Gaikwad N, Cavalieri E, Dahut WL, Sackett DL, Figg WD, Sparreboom A (2008) Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther 7:19–26. doi:10.1158/1535-7163.MCT-07-0557

    Article  CAS  PubMed  Google Scholar 

  98. Stewart CF, Baker SD, Heideman RL, Jones D, Crom WR, Pratt CB (1994) Clinical pharmacodynamics of continuous infusion topotecan in children: systemic exposure predicts hematologic toxicity. J Clin Oncol 12:1946–1954

    CAS  PubMed  Google Scholar 

  99. Zamboni WC, Bowman LC, Tan M, Santana VM, Houghton PJ, Meyer WH, Pratt CB, Heideman RL, Gajjar AJ, Pappo AS, Stewart CF (1999) Interpatient variability in bioavailability of the intravenous formulation of topotecan given orally to children with recurrent solid tumors. Cancer Chemother Pharmacol 43:454–460. doi:10.1007/s002800050923

    Article  CAS  PubMed  Google Scholar 

  100. Santana VM, Zamboni WC, Kirstein MN, Tan M, Liu T, Gajjar A, Houghton PJ, Stewart CF (2003) A pilot study of protracted topotecan dosing using a pharmacokinetically guided dosing approach in children with solid tumors. Clin Cancer Res 9:633–640

    CAS  PubMed  Google Scholar 

  101. Stewart CF, Iacono LC, Chintagumpala M, Kellie SJ, Ashley D, Zamboni WC, Kirstein MN, Fouladi M, Seele LG, Wallace D, Houghton PJ, Gajjar A (2004) Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor. J Clin Oncol 22:3357–3365. doi:10.1200/JCO.2004.10.103

    Article  CAS  PubMed  Google Scholar 

  102. Pawlik CA, Houghton PJ, Stewart CF, Cheshire PJ, Richmond LB, Danks MK (1998) Effective schedules of exposure of medulloblastoma and rhabdomyosarcoma xenografts to topotecan correlate with in vitro assays. Clin Cancer Res 4:1995–2002

    CAS  PubMed  Google Scholar 

  103. Touw DJ, Neef C, Thomson AH, Vinks AA, Cost-Effectiveness of Therapeutic Drug Monitoring Committee of the International Association for Therapeutic Drug M, Clinical T (2005) Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit 27:10–17

    Article  CAS  PubMed  Google Scholar 

  104. de Jonge ME, Huitema AD, Schellens JH, Rodenhuis S, Beijnen JH (2005) Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet 44:147–173. doi:10.2165/00003088-200544020-00002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank and acknowledge Katherine Miller at the Levine Cancer Institute for her contributions to preparing Fig. 1.

Funding

No funding was used in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai N. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J.N., Papachristos, A. Personalizing chemotherapy dosing using pharmacological methods. Cancer Chemother Pharmacol 76, 879–896 (2015). https://doi.org/10.1007/s00280-015-2849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2849-x

Keywords

Navigation