Skip to main content

Advertisement

Log in

Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Lactobacillus acidophilus is widely used for gastrointestinal disorders, but its role in inflammatory conditions like in chemotherapy-induced mucositis is unclear. Here, we report the effect of L. acidophilus on 5-fluorouracil-induced (5-FU) intestinal mucositis in mice.

Methods

Mice weighing 25–30 g (n = 8) were separated into three groups, saline, 5-FU, and 5-FU + L. acidophilus (5-FU-La) (16 × 109 CFU/kg). In the 5-FU-La group, L. acidophilus was administered concomitantly with 5-FU on the first day and alone for two additional days. Three days after the last administration of L. acidophilus, the animals were euthanized and the jejunum and ileum were removed for histopathological assessment and for evaluation of levels of myeloperoxidase activity, sulfhydryl groups, nitrite, and cytokines (TNF-α, IL-1β, CXCL-1, and IL-10). In addition, we investigated gastric emptying using spectrophotometry after feeding a 1.5-ml test meal by gavage and euthanasia. Data were submitted to ANOVA and Bonferroni’s test, with the level of significance at p < 0.05.

Results

Intestinal mucositis induced by 5-FU significantly (p < 0.05) reduced the villus height–crypt depth ratio and GSH concentration and increased myeloperoxidase activity and the nitrite concentrations compared with the control group. Furthermore, 5-FU significantly (p < 0.05) increased cytokine (TNF-α, IL-1β, and CXCL-1) concentrations and decreased IL-10 concentrations compared with the control group. 5-FU also significantly (p < 0.05) delayed gastric emptying and gastrointestinal transit compared with the control group. All of these changes were significantly (p < 0.05) reversed by treatment with L. acidophilus.

Conclusions

Lactobacillus acidophilus improves the inflammatory and functional aspects of intestinal mucositis induced by 5-FU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fuller R (1991) Probiotics in human medicine. Gut 32(4):439–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Laudanno O, Vasconcelos L, Catalana J, Cesolari J (2006) Anti-inflammatory effect of bioflora probiotic administered orally or subcutaneously with live or dead bacteria. Dig Dis Sci 51(12):2180–2183. doi:10.1007/s10620-006-9175-4

    Article  PubMed  Google Scholar 

  3. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, Grenther WB, Sartor RB (2003) Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut 52(3):370–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jespersen L (2003) Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res 3(2):191–200

    Article  CAS  PubMed  Google Scholar 

  5. Mack DR, Lebel S (2004) Role of probiotics in the modulation of intestinal infections and inflammation. Curr Opin Gastroenterol 20(1):22–26

    Article  PubMed  Google Scholar 

  6. van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6(5):e1000879. doi:10.1371/journal.ppat.1000879

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284. doi:10.1038/nrc1318

    Article  CAS  PubMed  Google Scholar 

  8. Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63(1):91–98. doi:10.1007/s00280-008-0715-9

    Article  CAS  PubMed  Google Scholar 

  9. Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18(9):853–874

    Article  CAS  PubMed  Google Scholar 

  10. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  CAS  PubMed  Google Scholar 

  11. Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 34(1):39–43

    Article  CAS  PubMed  Google Scholar 

  12. Baerg J, Murphy JJ, Anderson R, Magee JF (1999) Neutropenic enteropathy: a 10-year review. J Pediatr Surg 34(7):1068–1071

    Article  CAS  PubMed  Google Scholar 

  13. Keefe DM, Gibson RJ, Hauer-Jensen M (2004) Gastrointestinal mucositis. Semin Oncol Nurs 20(1):38–47

    Article  PubMed  Google Scholar 

  14. Stringer AM, Gibson RJ, Bowen JM, Logan RM, Yeoh AS, Keefe DM (2007) Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J Support Oncol 5(6):259–267

    CAS  PubMed  Google Scholar 

  15. MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17(2):135–150

    Article  CAS  PubMed  Google Scholar 

  16. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60(3):618–622

    CAS  PubMed  Google Scholar 

  17. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25(1):192–205

    Article  CAS  PubMed  Google Scholar 

  18. Chen SM, Swilley S, Bell R, Rajanna S, Reddy SL, Rajanna B (2000) Lead induced alterations in nitrite and nitrate levels in different regions of the rat brain. Comp Biochem Physiol C Toxicol Pharmacol 125(3):315–323

    CAS  PubMed  Google Scholar 

  19. Reynell PC, Spray GH (1958) Chemical gastroenteritis in the rat. Gastroenterology 34(5):867–873

    CAS  PubMed  Google Scholar 

  20. Whitford EJ, Cummins AG, Butler RN, Prisciandaro LD, Fauser JK, Yazbeck R, Lawrence A, Cheah KY, Wright TH, Lymn KA, Howarth GS (2009) Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Cancer Biol Ther 8(6):505–511

    Article  CAS  Google Scholar 

  21. Smith CL, Geier MS, Yazbeck R, Torres DM, Butler RN, Howarth GS (2008) Lactobacillus fermentum BR11 and fructo-oligosaccharide partially reduce jejunal inflammation in a model of intestinal mucositis in rats. Nutr Cancer 60(6):757–767. doi:10.1080/01635580802192841

    Article  CAS  PubMed  Google Scholar 

  22. Prisciandaro LD, Geier MS, Butler RN, Cummins AG, Howarth GS (2011) Probiotic factors partially improve parameters of 5-fluorouracil-induced intestinal mucositis in rats. Cancer Biol Ther 11(7):671–677

    Article  CAS  PubMed  Google Scholar 

  23. Mauger CA, Butler RN, Geier MS, Tooley KL, Howarth GS (2007) Probiotic effects on 5-fluorouracil-induced mucositis assessed by the sucrose breath test in rats. Dig Dis Sci 52(3):612–619. doi:10.1007/s10620-006-9464-y

    Article  CAS  PubMed  Google Scholar 

  24. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100(9 Suppl):1995–2025. doi:10.1002/cncr.20162

    Article  PubMed  Google Scholar 

  25. Edens HA, Levi BP, Jaye DL, Walsh S, Reaves TA, Turner JR, Nusrat A, Parkos CA (2002) Neutrophil transepithelial migration: evidence for sequential, contact-dependent signaling events and enhanced paracellular permeability independent of transjunctional migration. J Immunol 169(1):476–486

    Article  CAS  PubMed  Google Scholar 

  26. Lima V, Brito GA, Cunha FQ, Reboucas CG, Falcao BA, Augusto RF, Souza ML, Leitao BT, Ribeiro RA (2005) Effects of the tumour necrosis factor-alpha inhibitors pentoxifylline and thalidomide in short-term experimental oral mucositis in hamsters. Eur J Oral Sci 113(3):210–217. doi:10.1111/j.1600-0722.2005.00216.x

    Article  CAS  PubMed  Google Scholar 

  27. Carneiro-Filho BA, Oria RB, Wood Rea K, Brito GA, Fujii J, Obrig T, Lima AA, Guerrant RL (2004) Alanyl-glutamine hastens morphologic recovery from 5-fluorouracil-induced mucositis in mice. Nutrition 20(10):934–941. doi:10.1016/j.nut.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  28. Petschow BW, Carter DL, Hutton GD (1993) Influence of orally administered epidermal growth factor on normal and damaged intestinal mucosa in rats. J Pediatr Gastroenterol Nutr 17(1):49–58

    Article  CAS  PubMed  Google Scholar 

  29. Orazi A, Du X, Yang Z, Kashai M, Williams DA (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Investig 75(1):33–42

    CAS  PubMed  Google Scholar 

  30. Sezer A, Usta U, Cicin I (2009) The effect of Saccharomyces boulardii on reducing irinotecan-induced intestinal mucositis and diarrhea. Med Oncol 26(3):350–357. doi:10.1007/s12032-008-9128-1

    Article  PubMed  Google Scholar 

  31. Riccia DN, Bizzini F, Perilli MG, Polimeni A, Trinchieri V, Amicosante G, Cifone MG (2007) Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis 13(4):376–385. doi:10.1111/j.1601-0825.2006.01291.x

    Article  PubMed  Google Scholar 

  32. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, Suzuki A, Sata M (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140(3):417–426. doi:10.1111/j.1365-2249.2005.02790.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA, Ribeiro RA, Souza MH, Soares PM (2014) Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 111(9):1611–1621. doi:10.1017/S0007114513004248

    Article  CAS  PubMed  Google Scholar 

  34. Fidan I, Kalkanci A, Yesilyurt E, Yalcin B, Erdal B, Kustimur S, Imir T (2009) Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses 52(1):29–34. doi:10.1111/j.1439-0507.2008.01545.x

    Article  CAS  PubMed  Google Scholar 

  35. Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V (2010) Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol 5:31. doi:10.1186/1748-717X-5-3136

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bleau C, Lamontagne L, Savard R (2005) New Lactobacillus acidophilus isolates reduce the release of leptin by murine adipocytes leading to lower interferon-gamma production. Clin Exp Immunol 140(3):427–435. doi:10.1111/j.1365-2249.2005.02785.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138(7):1355–1359

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63(1):91–98. doi:10.1007/s00280-008-0715-9

    Article  CAS  PubMed  Google Scholar 

  39. Riezzo G, Clemente C, Leo S, Russo F (2005) The role of electrogastrography and gastrointestinal hormones in chemotherapy-related dyspeptic symptoms. J Gastroenterol 40(12):1107–1115. doi:10.1007/s00535-005-1708-7

    Article  CAS  PubMed  Google Scholar 

  40. Massi M, Ioan P, Budriesi R, Chiarini A, Vitali B, Lammers KM, Gionchetti P, Campieri M, Lembo A, Brigidi P (2006) Effects of probiotic bacteria on gastrointestinal motility in guinea-pig isolated tissue. World J Gastroenterol 12(37):5987–5994

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Czerucka D, Rampal P (2002) Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect 4(7):733–739

    Article  PubMed  Google Scholar 

  42. Budriesi R, Ioan P, Micucci M, Micucci E, Limongelli V, Chiarini A (2010) Stop Fitan: antispasmodic effect of natural extract of chestnut wood in guinea pig ileum and proximal colon smooth muscle. J Med Food 13(5):1104–1110. doi:10.1089/jmf.2009.0210

    Article  CAS  PubMed  Google Scholar 

  43. Tajima T, Murata T, Aritake K, Urade Y, Michishita M, Matsuoka T, Narumiya S, Ozaki H, Hori M (2012) EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals. Am J Physiol Gastrointest Liver Physiol 302(5):G524–G534. doi:10.1152/ajpgi.00264.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Vilz TO, Overhaus M, Stoffels B, Websky M, Kalff JC, Wehner S (2012) Functional assessment of intestinal motility and gut wall inflammation in rodents: analyses in a standardized model of intestinal manipulation. J Vis Exp. doi:10.3791/40864086

    Google Scholar 

  45. Sonnier DI, Bailey SR, Schuster RM, Gangidine MM, Lentsch AB, Pritts TA (2012) Proinflammatory chemokines in the intestinal lumen contribute to intestinal dysfunction during endotoxemia. Shock 37(1):63–69. doi:10.1097/SHK.0b013e31823cbff1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for financial support and Maria Silvandira Freire França for technical assistance. Dr. Ribeiro, Dr. Souza, and Dr. Soares are CNPq fellowship holders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Marcos Gomes Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justino, P.F.C., Melo, L.F.M., Nogueira, A.F. et al. Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 75, 559–567 (2015). https://doi.org/10.1007/s00280-014-2663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2663-x

Keywords

Navigation