Skip to main content

Advertisement

Log in

Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Despite overall successful application to multiple myeloma patients, clinical efficacy of the proteasome inhibitor bortezomib is typically challenged by primary and secondary resistance of unknown origin. So far, the potential impact of intracellular concentrations on drug efficacy of bortezomib and the influence of drug transporters are unknown.

Methods

We determined cellular bortezomib kinetics in nine myeloma cell lines using ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. The potential influence of drug transporters on the uptake kinetics observed in these cell lines was investigated by testing substrate characteristics of bortezomib for several transporters in over-expressing model cells. Additionally, transporter mRNA expression was quantified in myeloma cell lines by real-time polymerase chain reaction (RT-PCR).

Results

All myeloma cells revealed an extensive intracellular bortezomib accumulation (47.5–183 ng/ml) exceeding extracellular concentrations (0.04–0.17 ng/ml) by more than factor 1,000. Only organic anion-transporting polypeptide 1B1 facilitated the uptake in over-expressing cells, however, to a negligible extent (factor 1.36). Bortezomib efflux via P-glycoprotein was confirmed by demonstrating reduced sensitivity (IC50 11.6 vs. 2.8 ng/ml) and intracellular concentrations (−56.1 %) in over-expressing cells compared to controls. RT-PCR revealed a varying but overall weak transporter expression in the studied myeloma cells without any correlation to intracellular concentrations. Although principally valid as demonstrated in the P-glycoprotein over-expressing cell model, there was no significant correlation between intracellular concentrations and bortezomib efficacy in myeloma cell lines.

Conclusion

Differences in intracellular concentrations in myeloma cell lines neither result from variable transporter expression nor represent the main factor determining bortezomib efficacy in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873

    Article  CAS  PubMed  Google Scholar 

  2. Barlogie B, Tricot GJ, van Rhee F, Angtuaco E, Walker R, Epstein J, Shaughnessy JD, Jagannath S, Bolejack V, Gurley J, Hoering A, Vesole D, Desikan R, Siegel D, Mehta J, Singhal S, Munshi NC, Dhodapkar M, Jenkins B, Attal M, Harousseau JL, Crowley J (2006) Longterm outcome results of the first tandem autotransplant trial for multiple myeloma. Br J Haematol 135:158–164

    Article  PubMed  Google Scholar 

  3. Neben K, Lokhorst HM, Jauch A, Bertsch U, Hielscher T, van der Holt B, Salwender H, Blau IW, Weisel K, Pfreundschuh M, Scheid C, Dührsen U, Lindemann W, Schmidt-Wolf IG, Peter N, Teschendorf C, Martin H, Haenel M, Derigs HG, Raab MS, Ho AD, van de Velde H, Hose D, Sonneveld P, Goldschmidt H (2012) Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood 119:940–948

    Article  CAS  PubMed  Google Scholar 

  4. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  CAS  PubMed  Google Scholar 

  5. Reece DE, Sullivan D, Lonial S, Mohrbacher AF, Chatta G, Shustik C, Burris H III, Venkatakrishnan K, Neuwirth R, Riordan WJ, Karol M, von Moltke LL, Acharya M, Zannikos P, Keith Stewart A (2011) Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother Pharmacol 67:57–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hemeryck A, Geerts R, Monbaliu J, Hassler S, Verhaeghe T, Diels L, Verluyten W, van Beijsterveldt L, Mamidi RN, Janssen C, De Coster R (2007) Tissue distribution and depletion kinetics of bortezomib and bortezomib-related radioactivity in male rats after single and repeated intravenous injection of 14 C-bortezomib. Cancer Chemother Pharmacol 60:777–787

    Article  CAS  PubMed  Google Scholar 

  7. Andriamanana I, Gana I, Duretz B, Hulin A (2013) Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 926:83–91

    Article  CAS  Google Scholar 

  8. de la Puente P, Azab AK (2013) Contemporary drug therapies for multiple myeloma. Drugs Today (Barc.) 49:563–573

    Article  Google Scholar 

  9. Dispenzieri A, Jacobus S, Vesole DH, Callandar N, Fonseca R, Greipp PR (2010) Primary therapy with single agent bortezomib as induction, maintenance and re-induction in patients with high-risk myeloma: results of the ECOG E2A02 trial. Leukemia 24:1406–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, Avigan DE, Oaklander AL, Kuter DJ, Wen PY, Kesari S, Briemberg HR, Schlossman RL, Munshi NC, Heffner LT, Doss D, Esseltine DL, Weller E, Anderson KC, Amato AA (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27:3518–3525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, Scheffer GL, Debipersad K, Vojtekova K, Lemos C, van der Heijden JW, Ylstra B, Peters GJ, Kaspers GL, Dijkmans BA, Scheper RJ, Jansen G (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112:2489–2499

    Article  CAS  PubMed  Google Scholar 

  12. Shabaneh TB, Downey SL, Goddard AL, Screen M, Lucas MM, Eastman A, Kisselev AF (2013) Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS ONE 8:e56132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chauhan D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, Anderson KC (2003) Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63:6174–6177

    CAS  PubMed  Google Scholar 

  14. Gareau C, Fournier MJ, Filion C, Coudert L, Martel D, Labelle Y, Mazroui R (2011) p21 (WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS ONE 6:e20254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Seckinger A, Meissner T, Moreaux J, Goldschmidt H, Fuhler GM, Benner A, Hundemer M, Rème T, Shaughnessy JD Jr, Barlogie B, Bertsch U, Hillengass J, Ho AD, Pantesco V, Jauch A, De Vos J, Rossi JF, Möhler T, Klein B, Hose D (2009) Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene 28:3866–3879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, Granzow M, Raab MS, Ho AD, Goldschmidt H, Hose D (2013) Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 31:4325–4332

    Article  PubMed  Google Scholar 

  17. Dalton WS, Grogan TM, Meltzer PS, Scheper RJ, Durie BG, Taylor CW, Miller TP, Salmon SE (1989) Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7:415–424

    CAS  PubMed  Google Scholar 

  18. Verbrugge SE, Assaraf YG, Dijkmans BA, Scheffer GL, Al M, den Uyl D, Oerlemans R, Chan ET, Kirk CJ, Peters GJ, van der Heijden JW, de Gruijl TD, Scheper RJ, Jansen G (2012) Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther 341:174–182

    Article  CAS  PubMed  Google Scholar 

  19. Zheng B, Zhou R, Gong Y, Yang X, Shan Q (2012) Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines. Int J Lab Hematol 34:237–247

    Article  CAS  PubMed  Google Scholar 

  20. Minderman H, Zhou Y, O’Loughlin KL, Baer MR (2007) Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemother Pharmacol 60:245–255

    Article  CAS  PubMed  Google Scholar 

  21. Lü S, Chen Z, Yang J, Chen L, Zhou H, Xu X, Li J, Han F, Wang J (2010) The effects of proteasome inhibitor bortezomib on a P-gp positive leukemia cell line K562/A02. Int J Lab Hematol 32:e123–e131

    Article  PubMed  Google Scholar 

  22. Rumpold H, Salvador C, Wolf AM, Tilg H, Gastl G, Wolf D (2007) Knockdown of PgP resensitizes leukemic cells to proteasome inhibitors. Biochem Biophys Res Commun 361:549–554

    Article  CAS  PubMed  Google Scholar 

  23. O’Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, Delmore J, Richardson P, Anderson K, Clynes M, Mitsiades CS, O’Gorman P (2013) The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol 71:1357–1368

    Article  PubMed  Google Scholar 

  24. Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, Sakimura R, Hanada M, Iwamoto Y (2007) The mechanism of cross-resistance to proteasome inhibitor bortezomib and overcoming resistance in Ewing’s family tumor cells. Int J Oncol 31:803–811

    CAS  PubMed  Google Scholar 

  25. Seckinger A, Meissner T, Moreaux J, Depeweg D, Hillengass J, Hose K, Rème T, Rösen-Wolff A, Jauch A, Schnettler R, Ewerbeck V, Goldschmidt H, Klein B, Hose D (2012) Clinical and prognostic role of annexin A2 in multiple myeloma. Blood 120:1087–1094

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS (2011) Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12:570–594

    Article  CAS  PubMed  Google Scholar 

  27. Clemens J, Longo M, Seckinger A, Hose D, Haefeli WE, Weiss J, Burhenne J (2014) Stability of the proteasome inhibitor bortezomib in cell based assays determined by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1345:128–138

    Article  CAS  PubMed  Google Scholar 

  28. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K (2002) Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36:164–172

    Article  CAS  PubMed  Google Scholar 

  29. König SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J (2010) Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother 65:2319–2328

    Article  PubMed  Google Scholar 

  30. Peters T, Lindenmaier H, Haefeli WE, Weiss J (2006) Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 372:291–299

    Article  CAS  PubMed  Google Scholar 

  31. Zembruski NC, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J (2011) Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother 66:802–812

    Article  CAS  PubMed  Google Scholar 

  32. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  33. Pharmacology review part 1 (p. 8), drug approval package of bortezomib, Center of Drug Evaluation and Research, Food and Drug Association (FDA), c2003 [cited 2014 August 5]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21602_Velcade_pharmr_P1.pdf

  34. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Beck P, Dubiella C, Groll M (2012) Covalent and non-covalent reversible proteasome inhibition. Biol Chem 393:1101–1120

    Article  CAS  PubMed  Google Scholar 

  36. Schwarzenbach H (2002) Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med Oncol 19:87–104

    Article  CAS  PubMed  Google Scholar 

  37. de Wilt LH, Jansen G, Assaraf YG, van Meerloo J, Cloos J, Schimmer AD, Chan ET, Kirk CJ, Peters GJ, Kruyt FA (2012) Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol 83:207–217

    Article  PubMed  Google Scholar 

  38. Busse A, Kraus M, Na IK, Rietz A, Scheibenbogen C, Driessen C, Blau IW, Thiel E, Keilholz U (2008) Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112:659–670

    Article  CAS  PubMed  Google Scholar 

  39. Shringarpure R, Catley L, Bhole D, Burger R, Podar K, Tai YT, Kessler B, Galardy P, Ploegh H, Tassone P, Hideshima T, Mitsiades C, Munshi NC, Chauhan D, Anderson KC (2006) Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 134:145–156

    Article  CAS  PubMed  Google Scholar 

  40. Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, Schmidt A, Hulin C, Leleu X, Esseltine DL, Venkatakrishnan K, Skee D, Feng H, Girgis S, Cakana A, van de Velde H, Deraedt W, Facon T (2012) Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet 51:823–829

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Deutsche Forschungsgemeinschaft (SFB/TRR79; Bonn, Germany) and the EU 7th framework program “OverMyR.” We thank A. H. Schinkel and P. Borst (The Netherlands Cancer Institute, Amsterdam, the Netherlands) for generously providing the cell lines LLC-MDR1, MDCKII-MDR1, MDCKII-BCRP, MDCKII-MRP1, MDCKII-MRP2, and MDCKII-MRP3. Furthermore, we thank D. Keppler (German Cancer Research Centre, Heidelberg, Germany) for generously providing the cell lines HEK-OATP1B1, HEK-OATP1B3, and HEK-KoG418 and T. Cihlar for providing the cell lines CHO-hOAT and CHOpIRES. We also thank J. Kocher, C. Mueller, S. Rosenzweig, M. Maurer, and A. Deschlmayr for their excellent technical assistance.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Weiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemens, J., Seckinger, A., Hose, D. et al. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother Pharmacol 75, 281–291 (2015). https://doi.org/10.1007/s00280-014-2643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2643-1

Keywords

Navigation