Skip to main content

Advertisement

Log in

Plasma pharmacokinetics and tissue and brain distribution of cisplatin in musk shrews

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin induces nausea and emesis, even with antiemetic supportive care. To assess platinum exposure, which could activate nausea and emesis, we quantitated platinum in the brain and various organs, and hindbrain and spinal cord substance P, a key neuropeptide for the neuronal signaling of nausea and emesis.

Methods

Musk shrews, a model species for nausea and emesis research, were dosed intraperitoneally with 20 mg/kg cisplatin and euthanized at up to 72 h after injection. Concentrations of platinum were quantitated in plasma ultrafiltrate, plasma, lung, kidney, combined forebrain and midbrain, hindbrain, and spinal cord by flameless atomic absorption spectrometry. Hindbrains and spinal cords were analyzed for substance P by immunohistochemistry after injection of 20 or 30 mg/kg.

Results

Plasma ultrafilterable platinum concentrations decreased rapidly till 60 min after dosing and then more slowly by 24 h. The concentrations of total platinum in both the fore- and midbrain and the hindbrain were similar at all time points and were at least 20-fold lower than plasma total platinum concentrations. There were no significant changes in substance P immunoreactivity after cisplatin dosing. Histology revealed damage to the renal cortex by 72 h after injection of cisplatin.

Conclusions

This is the first study to examine platinum concentrations in musk shrews after administration of cisplatin and delineate substance P immunohistochemical staining in the hindbrain and spinal cord of this species. The platinum concentrations detected in the brain could potentially contribute to the neurological side effects of cisplatin, such as nausea and emesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roila F, Herrstedt J, Aapro M, Gralla RJ, Einhorn LH, Ballatori E, Bria E, Clark-Snow RA, Espersen BT, Feyer P, Grunberg SM, Hesketh PJ, Jordan K, Kris MG, Maranzano E, Molassiotis A, Morrow G, Olver I, Rapoport BL, Rittenberg C, Saito M, Tonato M, Warr D (2010) Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol 21(Suppl 5):v232–v243

    Article  PubMed  Google Scholar 

  2. Hesketh PJ, Grunberg SM, Herrstedt J, de Wit R, Gralla RJ, Carides AD, Taylor A, Evans JK, Horgan KJ (2006) Combined data from two phase III trials of the NK1 antagonist aprepitant plus a 5HT 3 antagonist and a corticosteroid for prevention of chemotherapy-induced nausea and vomiting: effect of gender on treatment response. Support Care Cancer 14(4):354–360

    Article  CAS  PubMed  Google Scholar 

  3. Kris MG, Cubeddu LX, Gralla RJ, Cupissol D, Tyson LB, Venkatraman E, Homesley HD (1996) Are more antiemetic trials with a placebo necessary? Report of patient data from randomized trials of placebo antiemetics with cisplatin. Cancer 78(10):2193–2198

    Article  CAS  PubMed  Google Scholar 

  4. Martin M (1996) The severity and pattern of emesis following different cytotoxic agents. Oncology 53(Suppl 1):26–31

    Article  PubMed  Google Scholar 

  5. Hesketh PJ, Van Belle S, Aapro M, Tattersall FD, Naylor RJ, Hargreaves R, Carides AD, Evans JK, Horgan KJ (2003) Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists. Eur J Cancer 39(8):1074–1080

    Article  CAS  PubMed  Google Scholar 

  6. Albany C, Brames MJ, Fausel C, Johnson CS, Picus J, Einhorn LH (2012) Randomized, double-blind, placebo-controlled, phase iii cross-over study evaluating the oral neurokinin-1 antagonist aprepitant in combination with a 5HT3 receptor antagonist and dexamethasone in patients with germ cell tumors receiving 5-day cisplatin combination chemotherapy regimens: a hoosier oncology group study. J Clin Oncol 30(32):3938–4003

    Article  Google Scholar 

  7. Rudd JA, Andrews PLR (2005) Mechanisms of acute, delayed, and anticipatory emesis induced by anticancer therapies. In: Hesketh PJ (ed) Management of nausea and vomiting in cancer and cancer treatment. Jones and Bartlett, Sudbury, pp 15–65

    Google Scholar 

  8. Minami M, Endo T, Hirafuji M, Hamaue N, Liu Y, Hiroshige T, Nemoto M, Saito H, Yoshioka M (2003) Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. Pharmacol Ther 99(2):149–165

    Article  CAS  PubMed  Google Scholar 

  9. Percie du Sert N, Rudd JA, Moss R, Andrews PL (2009) The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret. Neurosci Lett 465(1):16–20

    Article  CAS  PubMed  Google Scholar 

  10. Percie du Sert N, Rudd JA, Apfel CC, Andrews PL (2010) Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT(3) receptor antagonists. Cancer Chemother Pharmacol 67:667–686

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gupta YK, Sharma SS (2002) Involvement of 5-HT1A and 5-HT2 receptor in cisplatin induced emesis in dogs. Indian J Physiol Pharmacol 46(4):463–467

    CAS  PubMed  Google Scholar 

  12. Sam TS, Cheng JT, Johnston KD, Kan KK, Ngan MP, Rudd JA, Wai MK, Yeung JH (2003) Action of 5-HT3 receptor antagonists and dexamethasone to modify cisplatin-induced emesis in Suncus murinus (house musk shrew). Eur J Pharmacol 472(1–2):135–145

    Article  CAS  PubMed  Google Scholar 

  13. De Jonghe BC, Horn CC (2009) Chemotherapy agent cisplatin induces 48 h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 296(4):R902–R911

    Article  PubMed Central  PubMed  Google Scholar 

  14. Horn CC, Henry S, Meyers K, Magnusson MS (2011) Behavioral patterns associated with chemotherapy-induced emesis: a potential signature for nausea in musk shrews. Front Neurosci 5:88

    Article  PubMed Central  PubMed  Google Scholar 

  15. Huang D, Meyers K, Henry S, De la Torre F, Horn CC (2011) Computerized detection and analysis of cancer chemotherapy-induced emesis in a small animal model, musk shrew. J Neurosci Methods 197(2):249–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zeimet AG, Reimer D, Radl AC, Reinthaller A, Schauer C, Petru E, Concin N, Braun S, Marth C (2009) Pros and cons of intraperitoneal chemotherapy in the treatment of epithelial ovarian cancer. Anticancer Res 29(7):2803–2808

    CAS  PubMed  Google Scholar 

  17. Holzer P (2004) Tachykinins. Handbook of experimental pharmacology, vol 164. Springer, Berlin

    Google Scholar 

  18. Qian QH, Yue W, Wang YX, Yang ZH, Liu ZT, Chen WH (2009) Gingerol inhibits cisplatin-induced vomiting by down regulating 5-hydroxytryptamine, dopamine and substance P expression in minks. Arch Pharm Res 32(4):565–573

    Article  CAS  PubMed  Google Scholar 

  19. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  PubMed  Google Scholar 

  20. Wang CH (1994) Introduction: a new experimental animal, Suncus murinus. In: Saito H, Wang CH, Chen CY (eds) Proceeding of ROC-Japan Symposium on Suncus murinus: new experimental animal, its speciality and usefulness, Tainan, Taiwan, R.O.C. Chia Nan Junior College of Pharmacy Press (Chia Nan, Taiwan ROC)

  21. Temple JL (2004) The musk shrew (Suncus murinus): a model species for studies of nutritional regulation of reproduction. ILAR J 45(1):25–34

    Article  CAS  PubMed  Google Scholar 

  22. Colville H, Dzadony R, Kemp R, Stewart S, Zeh HJ 3rd, Bartlett DL, Holleran J, Schombert K, Kosovec JE, Egorin MJ, Beumer JH (2010) In vitro circuit stability of 5-fluorouracil and oxaliplatin in support of hyperthermic isolated hepatic perfusion. J Extra Corpor Technol 42(1):75–79

    PubMed Central  PubMed  Google Scholar 

  23. Watson RE Jr, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7(1):155–159

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ (1981) Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 196(3):505–517

    Article  CAS  PubMed  Google Scholar 

  25. Hokfelt T, Ljungdahl A, Terenius L, Elde R, Nilsson G (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc Natl Acad Sci USA 74(7):3081–3085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Barajon I, Bersani M, Quartu M, Del Fiacco M, Cavaletti G, Holst JJ, Tredici G (1996) Neuropeptides and morphological changes in cisplatin-induced dorsal root ganglion neuronopathy. Exp Neurol 138(1):93–104

    Article  CAS  PubMed  Google Scholar 

  27. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661

    Article  CAS  PubMed  Google Scholar 

  28. Horn CC, Kimball BA, Wang H, Kaus J, Dienel S, Nagy A, Gathright GR, Yates BJ, Andrews PLR (2013) Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE 8(4):e60537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nakashima M, Shibata S, Tokunaga Y, Fujita H, Anda T, Arizono K, Tomiyama N, Sasaki H, Ichikawa M (1997) In-vivo microdialysis study of the distribution of cisplatin into brain tumour tissue after intracarotid infusion in rats with 9L malignant glioma. J Pharm Pharmacol 49(8):777–780

    Article  CAS  PubMed  Google Scholar 

  30. Brown R, Foran J, Olin S, Robinson D (1994) Physiological parameter values for PBPK models. International Life Sciences Institute: Risk Science Institute, Washington, DC

  31. Ramirez-Camacho R, Fernandez DE, Verdaguer JM, Gomez MM, Trinidad A, Garcia-Berrocal JR, Corvillo MA (2008) Cisplatin-induced hearing loss does not correlate with intracellular platinum concentration. Acta Otolaryngol 128(5):505–509

    Article  CAS  PubMed  Google Scholar 

  32. Esteban-Fernandez D, Verdaguer JM, Ramirez-Camacho R, Palacios MA, Gomez-Gomez MM (2008) Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J Anal Toxicol 32(2):140–146

    Article  CAS  PubMed  Google Scholar 

  33. Johnsson A, Olsson C, Nygren O, Nilsson M, Seiving B, Cavallin-Stahl E (1995) Pharmacokinetics and tissue distribution of cisplatin in nude mice: platinum levels and cisplatin-DNA adducts. Cancer Chemother Pharmacol 37(1–2):23–31

    Article  CAS  PubMed  Google Scholar 

  34. Sakaeda T, Kadoyama K, Okuno Y (2011) Adverse event profiles of platinum agents: data mining of the public version of the FDA adverse event reporting system, AERS, and reproducibility of clinical observations. Int J Med Sci 8(6):487–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Boissonade FM, Davison JS, Egizii R, Lucier GE, Sharkey KA (1996) The dorsal vagal complex of the ferret: anatomical and immunohistochemical studies. Neurogastroenterol Motil 8(3):255–272

    Article  CAS  PubMed  Google Scholar 

  36. Choie DD, Longnecker DS, del Campo AA (1981) Acute and chronic cisplatin nephropathy in rats. Lab Invest 44(5):397–402

    CAS  PubMed  Google Scholar 

  37. Liu M, Chien CC, Burne-Taney M, Molls RR, Racusen LC, Colvin RB, Rabb H (2006) A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol 17(3):765–774

    Article  CAS  PubMed  Google Scholar 

  38. van Hennik MB, van der Vijgh WJ, Klein I, Elferink F, Vermorken JB, Winograd B, Pinedo HM (1987) Comparative pharmacokinetics of cisplatin and three analogues in mice and humans. Cancer Res 47(23):6297–6301

    PubMed  Google Scholar 

  39. Zamboni WC, Gervais AC, Egorin MJ, Schellens JH, Hamburger DR, Delauter BJ, Grim A, Zuhowski EG, Joseph E, Pluim D, Potter DM, Eiseman JL (2002) Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin. Clin Cancer Res 8(9):2992–2999

    CAS  PubMed  Google Scholar 

  40. Kizu R, Higashi S, Kidani Y, Miyazaki M (1993) Pharmacokinetics of (1R,2R-diaminocyclohexane)oxalatoplatinum(II) in comparison with cisplatin following a single intravenous injection in rabbits. Cancer Chemother Pharmacol 31(6):475–480

    Article  CAS  PubMed  Google Scholar 

  41. Hardie EM, Page RL, Williams PL, Fischer WD (1991) Effect of time of cisplatin administration on its toxicity and pharmacokinetics in dogs. Am J Vet Res 52(11):1821–1825

    CAS  PubMed  Google Scholar 

  42. Jacobs SS, Fox E, Dennie C, Morgan LB, McCully CL, Balis FM (2005) Plasma and cerebrospinal fluid pharmacokinetics of intravenous oxaliplatin, cisplatin, and carboplatin in nonhuman primates. Clin Cancer Res 11(4):1669–1674

    Article  CAS  PubMed  Google Scholar 

  43. Urien S, Lokiec F (2004) Population pharmacokinetics of total and unbound plasma cisplatin in adult patients. Br J Clin Pharmacol 57(6):756–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep Part 1 50(4):219–244

    CAS  Google Scholar 

  45. Sugiura Y, Kitoh J (1984) The median and lateral substantia gelatinosa in the cervical cord of the musk shrew (Suncus murinus) and its synaptic composition. Anat Embryol (Berl) 170(1):21–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a pilot grant from the Women’s Cancer Research Center at the University of Pittsburgh Cancer Institute (UPCI) and Magee-Womens Cancer Research and Education Committee. Additional funding was supplied by the UPCI NIH Grant P30 CA047904 (Cancer Center Support Grant; CCSG), with core facility support to the Cancer Pharmacokinetic and Pharmacodynamic Facility (CPPF) and the Animal Facility (AF). We wish to thank the University of Pittsburgh, Division of Laboratory Animal Research, especially Dawn Everard, Katie Leschak, Megan Lambert, and Dr. Joseph Newsome for excellent care of the musk shrew colony at the UPCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Horn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiseman, J.L., Beumer, J.H., Rigatti, L.H. et al. Plasma pharmacokinetics and tissue and brain distribution of cisplatin in musk shrews. Cancer Chemother Pharmacol 75, 143–152 (2015). https://doi.org/10.1007/s00280-014-2623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2623-5

Keywords

Navigation